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Abstract

Tree decompositions provide a way to map an undirected graph onto a tree where each node in
this tree represents a subset of vertices from the original graph. The two endpoints of every edge
of the graph must live in at least one subset, and all the tree nodes that contain a particular vertex
from the graph must form a connected subtree. The largest vertex subset in this tree is known as
the width of the decomposition. Dynamic programming algorithms using tree decompositions often
provide a way to transform the complexity of a computation into a function that is polynomial in
the number of nodes and edges of the graph, but exponential in the decomposition’s width. One of
the most well-known algorithms of this type allows one to solve an instance of maximum weighted
independent set in time O(2wn) where n is the number of nodes in the original graph and w is the
width.

The majority of earlier work in this area is theoretical in nature and sheds little light on the true
time complexity or memory requirements of this type of dynamic programming computation. In
this talk, we describe some details of a careful implementation of an exact dynamic programming
algorithm for maximum weighted independent set. We are able to produce optimal solutions for
problem instances where the underlying graph has width much larger than previously thought
possible. Moreover, we demonstrate that, along with width, the density of the graph has a great
impact on the running time and memory usage of the dynamic programming algorithm.

Finally, we compare the performance and scaling of our implementation with well-established
methods such as mixed integer and semi-definite programming. While our dynamic programming
algorithm is unable to handle some rather small graphs with high width that are easily solved by
the other methods, we demonstrate that, for other types of problems, a dynamic programming
algorithm that exploits low width may be the only way to currently generate a provably optimal
solution.


