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Abstract 

 
We have examined the extension of Langevin-equation Monte-Carlo algorithms for Coulomb 

collisions from the conventional Euler O(∆t1/2)-order time integration to the next higher [Milstein-O(∆t)] 
order of accuracy. This examination has yielded many results, some of interest specifically for the 
Coulomb-collision problem, some of fundamental importance for integration of stochastic motion on a 
spherical (and, more generally, any curved) surface, and some of considerable utility for integration of 
multi-dimensional systems of stochastic differential equations (SDE’s). 

In one common Langevin-equation approach, the angular scattering is treated with a combination 
of near-Cartesian stochastic velocity-direction kicks, in a unit-vector frame that is rotated so that at the 
beginning of each timestep the third axis is aligned with the velocity direction. We find that in such 
schemes, the angular component of the collisional scattering cannot be extended beyond the Euler order. 
Instead, the extension to higher order proceeds via a formulation of the angular scattering directly as 
SDE’s in the two fixed-frame spherical-coordinate variables. This extension has been implemented, and 
results have been obtained for Coulomb collisions showing the improved [O(∆t) vs. O(∆t1/2)] convergence. 

Our algorithm requires generation of stochastic “area integrals” that represent higher-order 
coupling between these variables, in addition to generation of the Wiener-process increments. We have 
found a simple but accurate approximation to the joint probability density function (PDF) of the Levy-area 
and the Gaussian Wiener-process increments that considerably simplifies the sampling of the area integrals 
compared to the direct method of Gaines and Lyons [SIAM J. Appl. Math. 54, 1132-1146 (1994)], reduces 
the dimensionality of the sampling function from 2 to 1, and allows for a direct implementation using 
simple analytical formulas as an alternative to tables. 

We have also developed a direct approach to the conditional sampling problem involved in 
adaptive integration of SDE’s. This may be computationally more efficient than the quadrature-formula 
approach of Gaines and Lyons [SIAM J. Appl. Math. 57, 1455-1484 (1997)], because it avoids generation 
and storage of, and computations involving the many random numbers that representing the Wiener-
process increments over time intervals much finer than the actual numerical time step at a given level of 
refinement. Our approximation to the Levy-area-Wiener-displacement PDF is very helpful here because its 
use reduces the dimensionality of the conditional sampling function from 4 to 3. The computational 
memory required for storage of the associated table is then reduced from large to quite modest, and for 
many SDE calculations will not represent a large component of their memory load. 

In our direct explicit Milstein implementation for the Coulomb-collision problem (and the 
associated simpler spherical diffusion problem) the equilibrium state is determined by a dynamic balance 
of drag and scattering terms. Small numerical errors in either may cause significant errors in the computed 
equilibrium. Two-step algorithms are therefore considered, in which a predictor step is used to estimate 
centered (Stratonovich-calculus) or forward values of the stochastic variables. These may be more accurate 
because they can eliminate the need for the dynamic balance in the determination of the equilibrium state. 
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