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Abstract

Petascale spatiotemporal data pose a tremendous challenge for state-of-the art statistical tech-
niques. In particular, an important issue is determining models that appropriately account for the
major features in the data, such as physical or nonstationarity characteristics. Current techniques
rely on local fitting of ad hoc statistical models, which may not reveal a robust characterization
of the data statistics, or empirical sampling techniques that for large-scale applications result in
low-rank covariance matrices and may lead to difficulties in sampling and interpretation. Our focus
is on covariance modeling for Gaussian process regression with multiple outputs. Hitherto, such
Gaussian process analysis with multiple outputs was limited by the fact that far fewer good classes
of covariance functions exist compared with the scalar (single-output) case.

To address this difficulty, we turn to covariance function models that take a form consistent
in some sense with physical laws that govern the underlying simulated process. Models that in-
corporate such information are suitable when performing uncertainty quantification or inferences
on multidimensional processes with partially known relationships among different variables, also
known as co-kriging. One example is in atmospheric dynamics where pressure and wind speed are
driven by geostrophic assumptions (wind ∝ ∂/∂x pressure). We develop both analytical and nu-
merical auto-covariance and cross-covariance models that are consistent with physical constraints
or can incorporate automatically sensible assumptions about the process that generated the data.

We use these models to study Gaussian process regression for processes with multiple outputs
and latent processes (i.e., processes that are not directly observed and predicted but interrelate the
output quantities). In addition to deriving a systematic approach for describing the construction of
covariance models governed by linear processes, we ask what happens if the process is not linear. In
this case. We find that high-order closures are necessary to correctly specify the resulting covariance
models. We have demostrated that such a strategy, can be very important for nonlinear models
by comparing the fine approximation of the covariance structure resulting from a nonlinear process
with low- and high-order closure assumptions. The latter proves to be significantly more accurate.
Moreover, the strategy that we introduce in this study provides a physically consistent approach
to introduce nonstationarity in the structure of the covariance matrix.

Our results demonstrate the effectiveness of the approach on both synthetic and realistic data
sets. We consider Gaussian process regression experiments with a covariance model that has the
correct physically consistent structure, which demonstrates significant improvements in the forecast
efficiency. This strategy is validated on various synthetic and realistic data sets. The analytic
covariance functions are validated by comparing results obtained with the models introduced in
this study and covariance structures obtained through sampling strategies. We introduce new
nonstationary covariance models that are generated directly through the physical process. For
instance, we use a differential model on a nonuniform grid to generate nonstationary covariance
kernels. These models have properties that are appropriate for processes that take place on adaptive
grids or have various degrees of anisotropy.


