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Project Overview 

•  Personnel:  
•  Purdue: D. Xiu, J. Jakeman 
•  ORNL: R. Archibald, R. Deiterding, C. Hauck 

Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales 

•  Focuses:  
•  Adaptive stochastic algorithms in high dimensions 
•  Parallel implementations on new architecture (multicore, GPU, etc). 
•  Treatment of discontinuities in random space 

12CPU vs 6CPU/1GPU 24CPU vs 12CPU/2GPU 48CPU vs 24CPU/4GPU 96CPU vs 48CPU/8GPU
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=38760)

 

 

Multicore Nodes

Hybrid Nodes

(See Archibald’s poster for details) 



Dealing with Discontinuities in Random Space 
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•  Global approximation is not good 
  Gibbs oscillations 
  (Very) slow convergence 
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•  Global approximation is not good 
  Gibbs oscillations 
  (Very) slow convergence 

•  Standard approach: Multi-element 
•  Use multiple elements and conduct stochastic simulations in each element 
•  Elements are defined by splitting each dimension 
•  Exponential growth of the number of element (can be alleviated by adaptivity) 

~ 360 elements ~ 360 elements 
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•  Global approximation is not good 
  Gibbs oscillations 
  (Very) slow convergence 

•  Standard approach: Multi-element 
•  Use multiple elements and conduct stochastic simulations in each element 
•  Elements are defined by splitting each dimension 
•  Exponential growth of the number of element (can be alleviated by adaptivity) 

•  Our approach: Minimal Multi-element 
•  Discontinuity detection 
•  Domain classification 
•  SC in each sub-domain 

“Minimal”:   
        # of elements = # of smooth sub-domain 

•  Nodes will always be unstructured. 



More Practical Concerns 
•  Curse of dimensionality: let d=50 

    
d.o.f. PN

d( ) = N + d
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•  Stochastic collocation: # of nodes ≥ d.o.f(PN) 

Sparse grids level=1 level=2 level=3 
# of nodes 101 5,101 ~150,000 
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•  Simulation budget is limited:  
  “We can afford only 30 simulations. Do we get anything?” 
  “We can manage 300 simulations. Do we get something better than N=1?”  



•  Did not/Can not/Will not run simulations on the desired nodes: 
  Legacy runs 
  Simulation/experimental constraints 
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Problem Setting: Capability-based SC 

•  Given a fixed nodal set: unstructured 
•  Arbitrary number of nodes 
•  Arbitrary locations 

•  Approximation properties: 
•  Interpolation --- least orthogonal interpolation 

•  Goal: 
•  To construct high-order polynomial approximation 



Standard Polynomial Interpolation 

•  Given a set of nodes xj and data fj, find a polynomial p(x) such that p(xj)=fj. 

•  Standard Algorithm:  
                          Let  

  
p(x) = cmΦm(x)

i=1

M

∑

    
A = ajk( ) = Φk (x j )( ), j = 1,..., N p , k = 1,…, M

   
p(x j ) = cmΦm(x j )

i=1

M

∑ = f j ⇒ Ac = f

•  Interpolation condition:  

•  Vandermonde-like matrix:  



•  Example: Let us consider d=2 and use the usual (x,y) notation 

•  Ideal case: 
1 

y x 

Multiple Dimension ≈ Two-dimension 
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•  Example: Let us consider d=2 and use the usual (x,y) notation 

•  Ideal case: 
1 

y x 

x2 xy y2 

•  The less pleasant cases: 

•  Linear interpolation does not exist 

•  BUT, quadratic interpolation in y 
   using basis (1, y, y2) exists 

•  Admits quadratic 
interpolation (1, s, s2), 
where s=x-y  

Multiple Dimension ≈ Two-dimension 

o  Now, imagine d=100 and the nodes could lie on some complex hyper-surface. 
  Need an automated procedure 

•  Which bases to use? 



Orthogonal Least Interpolation: Introduction 

•  Motivation: de Boor and Ron (1990) 
•  A framework using homogeneous polynomials (monomials) 
•  (Relatively) ill-conditioned in high dimensions 

•  Our motivation: To extend this work to orthogonal polynomials 
•  For more robust numerical performance 
•  To “connect” with different probability measures 
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•  Motivation: de Boor and Ron (1990) 
•  A framework using homogeneous polynomials (monomials) 
•  (Relatively) ill-conditioned in high dimensions 

•  Our motivation: To extend this work to orthogonal polynomials 
•  For more robust numerical performance 
•  To “connect” with different probability measures 

•  Some notation:  
    
Multi-index i = i1,,id( ), i = i1 ++ id

     

Let f ∈Lω
2 ,  then its orthogonal projection exists and f = P∞ f ,  where

PN f = fi
Φi

|i|=0

N

∑ , fi
 = f ,Φi ω

    

Definition: f↓,ω ,  called f -least, is the first non-zero order terms in the series 

f↓,ω = Pm f , m = min N : PN f ≠ 0{ }



Orthogonal Least Interpolation: Theory 

•  Let X={x1,…,xNp}. For each xj, consider 

   
hj (⋅) = Φi (x j )Φi (⋅)

|i|=0

∞

∑

•  Let H=span{h1,…,hNp}. Define 

  
H↓,ω = h↓,ω : h ∈H{ }



Orthogonal Least Interpolation: Theory 

•  Let X={x1,…,xNp}. For each xj, consider 

   
hj (⋅) = Φi (x j )Φi (⋅)

|i|=0

∞

∑

•  Let H=span{h1,…,hNp}. Define 

  
H↓,ω = h↓,ω : h ∈H{ }

•  Theorem: H,ω is minimally total for interpolation on X. 
  “total”: all points are used. 
  “minimal”: It is of least degree. 

•  Corollary: There exists an orthogonal basis for H,ω with elements in H. 
  The space can be characterized by the basis  



Orthogonal Least Interpolation: Properties 

•  Key properties: 
  For any polynomial subspaces that is total for the interpolation, 
  H,ω  is of least degree. 
  H,ω is a nested space.  
 H,ω “includes” the standard polynomial space PN 
  H,ω is constructible from the Vandermonde-like interpolation matrix 
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•  Key properties: 
  For any polynomial subspaces that is total for the interpolation, 
  H,ω  is of least degree. 
  H,ω is a nested space.  
 H,ω “includes” the standard polynomial space PN 
  H,ω is constructible from the Vandermonde-like interpolation matrix 

•  Proposition:  
   If the measure ω is a standard Gaussian PDF in d dimensions, then the space  
  H,ω coincides with the original least interpolation space by [de Boor & Ron]. 

•  Remarks:  
  The original space of [de Boor & Ron] is the Hermite polynomial space 
  Hermite polynomials can be quite ill-conditioned. 
  We can now use customized orthogonal polynomials based on ω 



Orthogonal Least Interpolation: Construction 
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•  Construction Steps: Gauss elimination of the Vandermonde-like matrix 

    

A =

Φ0(x1) Φ1(x1) 

Φ0(x2 ) Φ1(x2 ) 

  

Φ0(xN p
) Φ1(xN p

) 

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Recall: orthogonal projection

PN f = f ,Φi ω
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N

∑ , fi
 = f ,Φi ω

•  Remarks:  each “element” is a vector 
  “Elimination” = enforce orthogonality in vector norm 
  Think of Gram-Schmit (if it helps) 



Construction: The Final Step 
•  Upon Gauss “elimination”: 

 A = L U G

•  L: Np×Np invertible matrix 
•  U: Np×Np invertible matrix 
•  G: Np×M “block diagonal” matrix 
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•  Our interpolating polynomial: 

   
(gn )↓,ω :  the diagonal terms of G,  loosely speaking.

   
f ,gn ω

= U−1L−1f

•  Finally: 
  
p(⋅) = f ,gn ω

(gn )↓,ω
n=1

N p

∑ = cmΦm
m=1

M

∑



  
p(⋅) = cmΦm(⋅)

i=1

M

∑

  c = A−1f = U−1L−1f

 A = L U

•  Standard interpolation: 

It is All About (Simple) Linear Algebra 

•  Space is PN (predetermined) 



  
p(⋅) = cn(gn )↓,ω

n=1

N p

∑

•  Least interpolation: 

  
p(⋅) = cmΦm(⋅)

i=1

M

∑

  c = A−1f = U−1L−1f

 A = L U G A = L U

•  Standard interpolation: 

  c = U−1L−1f

It is All About (Simple) Linear Algebra 

•  Space is PN (predetermined) •  Space is determined by the nodes, 
  via A (or G) 



Orthogonal Least Interpolation: Example 
•  Illustrative example for d=2: 

   f (x) = sin(n ⋅x), x ∈[−1,1]2

•  N=18 nodes lie linearly on a straight line in the direction of n 



Orthogonal Least Interpolation: Example 
•  Illustrative example for d=2: 

   f (x) = sin(n ⋅x), x ∈[−1,1]2

•  N=18 nodes lie linearly on a straight line in the direction of n 

•  Use Hermite polynomial (Original [de Boor & Ron] basis): 



•  Use Legendre polynomial: 



Hermite or Legendre ? 
•  Question: Which one is correct ? 



Hermite or Legendre ? 
•  Question: Which one is correct ? 

•  Answer: Both. (Or, neither, for the pessimistic-minded.) 
  They both interpolate the data correctly 
  Data do not contain any information away from the line 







Minimal Multi-element SC: Discontinuity Detection 

•  Resolution level is specified by users 



Minimal Multi-element SC 
Polynomial interpolation with increasing number of nodes 

True function and nodal sets 

•  Multi-dimensional problem with 2 elements: no additional simulations  



Summary 

  Open (and “bigger”) issues 
•  Good selection of nodes ?  
•  Error estimation ? 

  A highly flexible method for practical simulations 

  Least Orthogonal Interpolation:  
•  Arbitrary number of nodes and arbitrary locations 
•  Mathematically rigorous 
•  Constructible using simple linear algebra 

  References: 
•  Orthogonal least interpolation. (Narayan and Xiu, 2011) 
•  Discontinuity detection.  
  (Archibald et al, JCP 09; Jakeman, et al, JCP, 2010) 
•  Minimal element SC. (Jakeman, Narayan, Xiu, 2011) 


