Flexible Stochastic Collocation Algorithm
on Arbitrary Nodes

Dongbin Xiu

Department of Mathematics, Purdue University

PURDUE

Project Overview

Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

e Personnel:

e Purdue: D. Xiu, J. Jakeman
 ORNL: R. Archibald, R. Deiterding, C. Hauck

* Focuses:
» Adaptive stochastic algorithms in high dimensions
» Parallel implementations on new architecture (multicore, GPU, etc).
 Treatment of discontinuities in random space

Sparse Grid Computational Times (d=14, n=6, n =38760)

subgrid

106\ T T
r -©-Multicore Nodes
- ——Hybrid Nodes
o
[0
@
[0]
£
'—
©
C
il
s
=}
o
€
o i
o
}_
D
10' ‘ :
12CPU vs 6CPU/1GPU 24CPU vs 12CPU/2GPU 48CPU vs 24CPU/4AGPU 96CPU vs 48CPU/8GPU

Computational Resource

(See Archibald’s poster for details)

Dealing with Discontinuities in Random Space

e ST
T = T

* Global approximation is not good
= Gibbs oscillations
" (Very) slow convergence

zzzz
TTEE
53

Dealing with Discontinuities in Random Space

* Global approximation is not good
= Gibbs oscillations
" (Very) slow convergence

* Standard approach: Multi-element
» Use multiple elements and conduct stochastic simulations in each element
 Elements are defined by splitting each dimension
« Exponential growth of the number of element (can be alleviated by adaptivity)

~ 360 elements

T T T T

1
08f . i .t i e i .
h: -o-.?:u-!-::i;::- m:?..n..:*o: - .!-- oo - =
i1

. o8 Xl 3 .
e X BT TN R T
r Y i Y g .

0.6 pe=

e e3e
: :
.

R SR
: H
N O
o
A

H
-
.
« b . .
.
. .
.

0.4

0.2p *

e . .

fececesesccemmenccccosocimincs sesctmmicns e
. . .

. . .

T
3
e
-
S ah ot
H i
Fob b et

. . . ,
0'%.0 0.2 0.4 0.6 0.8 1.0

Dealing with Discontinuities in Random Space

N PP
an RN

* Global approximation is not good
= Gibbs oscillations
" (Very) slow convergence

zzzz
LLgS
ca

* Standard approach: Multi-element
» Use multiple elements and conduct stochastic simulations in each element
 Elements are defined by splitting each dimension
« Exponential growth of the number of element (can be alleviated by adaptivity)

1.0

* Our approach: Minimal Multi-element
* Discontinuity detection
* Domain classification
* SC in each sub-domain
“Minimal”:
of elements = # of smooth sub-domain

* Nodes will always be unstructured.

0.8 1.0

More Practical Concerns

* Curse of dimensionality: let d=50 dof(pd)=| ¥ ;d
d=50 N=1 N=2 N=3
d.o.f.(Py) 51 1326 23,426
* Stochastic collocation: # of nodes > d.o.f(Py)
Sparse grids level=1 level=2 level=3
of nodes 101 5,101 ~150,000

More Practical Concerns

* Curse of dimensionality: let d=50 dof(pd)=| ¥ ;d
d=50 N=1 N=2 N=3
d.o.f.(Py) 51 1326 23,426
* Stochastic collocation: # of nodes > d.o.f(Py)
Sparse grids level=1 level=2 level=3
of nodes 101 5,101 ~150,000

e Simulation budget is limited:

" “We can afford only 30 simulations. Do we get anything?”
" “We can manage 300 simulations. Do we get something better than N=1?"

More Practical Concerns

* Curse of dimensionality: let d=50 dof(pd)=| ¥ ;d
d=50 N=1 N=2 N=3
d.o.f.(Py) 51 1326 23,426
* Stochastic collocation: # of nodes > d.o.f(Py)
Sparse grids level=1 level=2 level=3
of nodes 101 5,101 ~150,000

e Simulation budget is limited:

" “We can afford only 30 simulations. Do we get anything?”
" “We can manage 300 simulations. Do we get something better than N=1?"

* Did not/Can not/Will not run simulations on the desired nodes:

= [egacy runs

» Simulation/experimental constraints

Problem Setting: Capability-based SC

 Given a fixed nodal set: unstructured
 Arbitrary number of nodes
* Arbitrary locations

* Goal:
* To construct high-order polynomial approximation

e Approximation properties:
* Interpolation --- least orthogonal interpolation

Standard Polynomial Interpolation

* Given a set of nodes x; and data f, find a polynomial p(x) such that p(x,)=f.

* Standard Algorithm: "
Let p(x)=Yc ® (x)
i=1

* Interpolation condition:

p(xj)zﬁcmd)m(xj)=fj = Ac=f

* Vandermonde-like matrix:

A=(a,)=(0,(x)). j=L..N,, k=L..M

Multiple Dimension = Two-dimension

* Example: Let us consider d=2 and use the usual (x,y) notation

* [deal case:
A 1

Multiple Dimension = Two-dimension

* Example: Let us consider d=2 and use the usual (x,y) notation

* [deal case:

Y

Xy

yZ

* Which bases to use?

Multiple Dimension = Two-dimension

* Example: Let us consider d=2 and use the usual (x,y) notation

* [deal case:

Y

Xy

yZ

* The less pleasant cases:

* Linear interpolation does not exist

* Which bases to use?

Multiple Dimension = Two-dimension

* Example: Let us consider d=2 and use the usual (x,)) notation

* [deal case:

Xy

* The less pleasant cases:

b

* Linear interpolation does not exist

* BUT, quadratic interpolation in y
using basis (7, y,) exists

>

* Which bases to use?

Multiple Dimension = Two-dimension

* Example: Let us consider d=2 and use the usual (x,)) notation

* [deal case:

A
(@)
X Y
o x|y |y
@
. .
* Which bases to use?
>
* The less pleasant cases: A
* Linear interpolation does not exist ‘
.. .. y * Admits quadratic
* BUT, quadratic interpolation in y : . P
E o basis (2) exist @ interpolation (/, s, s9),
using basis (7, y, y*) exists ’ where s=x-y
> >

Multiple Dimension = Two-dimension

* Example: Let us consider d=2 and use the usual (x,)) notation

* [deal case:

Xy Y

* The less pleasant cases:

b

* Linear interpolation does not exist

* BUT, quadratic interpolation in y
using basis (7, y,) exists

>

* Which bases to use?

0"
')
*
‘0

* Admits quadratic
& interpolation (/, s, s2),
where s=x-y
>

‘0
‘0
*

o Now, imagine d=100 and the nodes could lie on some complex hyper-surface.

» Need an automated procedure

Orthogonal Least Interpolation: Introduction

* Motivation: de Boor and Ron (1990)
* A framework using homogeneous polynomials (monomials)
* (Relatively) ill-conditioned in high dimensions

* Our motivation: To extend this work to orthogonal polynomials
* For more robust numerical performance
* To “connect” with different probability measures

Orthogonal Least Interpolation: Introduction

* Motivation: de Boor and Ron (1990)
* A framework using homogeneous polynomials (monomials)
* (Relatively) ill-conditioned in high dimensions

* Our motivation: To extend this work to orthogonal polynomials
* For more robust numerical performance
* To “connect” with different probability measures

 Some notation: Multi-indexiz(zl,---,z) ‘i‘:i1+---+id

Letf e Lfg , then its orthogonal projection exists and f = P_f, where

N/\ AN

PNf:ZficI)i, fi:<f’q)i>w

Definition: /, , called f-least, is the first non-zero order terms in the series

So=P.S, m:min{N:PNf;tO}

Orthogonal Least Interpolation: Theory

* Let X={x,,...,x,}. For each x;, consider

h()= 3 0,(x D)

i[=0

* Let H=span{#h,,...,hy,}. Define

Hi,wz{hi,w :heH}

Orthogonal Least Interpolation: Theory

* Let X={x,,...,x,}. For each x;, consider

h()= 3 0,(x D)

li[=0

* Let H=span{#,,...,hy,}. Define

Hm ={h¢,w :heH}

e Theorem: Hy , is minimally total for interpolation on X.
= “total”: all points are used.
= “minimal”: It is of least degree.

* Corollary: There exists an orthogonal basis for Hy , with elements in H.
* The space can be characterized by the basis

Orthogonal Least Interpolation: Properties

* Key properties:
* For any polynomial subspaces that is total for the interpolation,
Hy, 1s of least degree.
" Hy ,1s a nested space.
"Hy , “includes” the standard polynomial space P,

" Hy ,1s constructible from the Vandermonde-like interpolation matrix

Orthogonal Least Interpolation: Properties

» Key properties:
* For any polynomial subspaces that is total for the interpolation,
Hy, 1s of least degree.
" Hy ,1s a nested space.
"Hy , “includes” the standard polynomial space P,

" Hy ,1s constructible from the Vandermonde-like interpolation matrix

 Proposition:
If the measure w is a standard Gaussian PDF in d dimensions, then the space
Hy , coincides with the original least interpolation space by [de Boor & Ron].

* Remarks:
» The original space of [de Boor & Ron] is the Hermite polynomial space
* Hermite polynomials can be quite ill-conditioned.
= We can now use customized orthogonal polynomials based on w

Orthogonal Least Interpolation: Construction
* Our (strange-looking) interpolation space: H = {hm che H }

» Orthogonal basis exists: g,,*,g, € H, such that <gn,(gm)¢,a,>

® n,m

Orthogonal Least Interpolation: Construction
* Our (strange-looking) interpolation space: H = {hm che H }

» Orthogonal basis exists: g,,*,g, € H, such that <gn,(gm)¢,w>

® n,m

* Then our interpolating polynomial is:

PO=2(1.2,),)0,

Orthogonal Least Interpolation: Construction
* Our (strange-looking) interpolation space: H = {hm che H }

» Orthogonal basis exists: g,,*,g, € H, such that <gn,(gm)¢,w>

. n,m

 Then our interpolating polynomial is: Recall: orthogonal projection
N ~
PNf:Z<fﬂq)i>wq)i> fi:<f’q)i>w

lij=0

PO=2(1.2,),)0,

Orthogonal Least Interpolation: Construction
* Our (strange-looking) interpolation space: H = {hm che H }

* Orthogonal basis exists: g,,***,g, € H, such that <gn,(gm)¢,w>

® n,m

* Then our interpolating polynomial is: Recall: orthogonal projection
N ~
RS =2 ®), @0 =(19),

li|=0

PO=2(1.2,),)0,

e Construction Steps: Gauss elimination of the Vandermonde-like matrix

Py(x) Dy(x)
D,(x,) D (x,)

(v,) By(x,)

Orthogonal Least Interpolation: Construction

* Our (strange-looking) interpolation space: H = {hm che H }

* Orthogonal basis exists: g,,***,g, € H, such that <gn,(gm)¢,w>

® n,m

* Then our interpolating polynomial is: Recall: orthogonal projection
N ~
Pf=2{1@), @, f=(/.®),

li[=0

PO=2(1.2,),)0,

e Construction Steps: Gauss elimination of the Vandermonde-like matrix

D,(x) D, (x)
D,(x,) @, (x,)

(v,) By(x,)

* Remarks: each “element” is a vector

= “Elimination” = enforce orthogonality in vector norm
" Think of Gram-Schmit (if it helps)

Construction: The Final Step

e Upon Gauss “elimination”:
A=L U G

*L: N,xN, invertible matrix
* U: N, XN, invertible matrix
* G: N,xM “block diagonal” matrix

Construction: The Final Step

e Upon Gauss “elimination”:
A=L U G

*L: N,xN, invertible matrix
* U: N, XN, invertible matrix
* G: N,xM “block diagonal” matrix

* Our interpolating polynomial:
N
p() = 2<f’gn>w (gn)i,a)
n=1

(g,),, : the diagonal terms of G, loosely speaking.

(f.g,) =U'L'f

Construction: The Final Step

e Upon Gauss “elimination”:
A=L U G

e L: Np ><Np invertible matrix
e U: Np ><Np invertible matrix
* G: N,xM “block diagonal” matrix

* Our interpolating polynomial:
N
p() = 2<f’gn>w (gn)l/,w
n=1

(g,),, : the diagonal terms of G, loosely speaking.

<f,gn >w =U'L'f

M

N
* Finally: p()= 2<f ,gn>w (&), = 2.2,
n=1

m=1

It is All About (Simple) Linear Algebra

 Standard interpolation:
M
pO=2.¢,®,0)
i=1
A=L U

c=A"f =UL'f

* Space is Py (predetermined)

It is All About (Simple) Linear Algebra

 Standard interpolation:
M
pO=2.¢,®,0)
i=1
A=L U

c=A"f =UL'f

* Space is Py (predetermined)

* Least interpolation:
NP
pO=2c,(8,).,
n=1
A=L U G

c=U'L'f

* Space is determined by the nodes,
via A (or G)

Orthogonal Least Interpolation: Example

* [llustrative example for d=2:

f(x)=sin(n-x), xe[-LIJ
« N=18 nodes lie linearly on a straight line in the direction of n

Orthogonal Least Interpolation: Example

* [llustrative example for d=2:

(x)=sin(n-x), xe[-11]

« N=18 nodes lie linearly on a straight line in the direction of n

e Use Hermite polynomial (Original [de Boor & Ron] basis):

Gaussian pdf (Hermite polynomials)

Gaussian pdf (Hermite polynomials)

* Use Legendre polynomial:

Uniform pdf (Legendre polynomials)

‘ il
i
///// il
oy
,;/%/ W

Uniform pdf (Legendre polynomials)

Hermite or Legendre ?

* Question: Which one is correct ?

Gaussian pdf (Hermite polynomials) Uniform pdf (Legendre polynomials)

1 - NN ; RN L L T
-1 -0. 0 0.5 1 -1 -0.5 0 0.5 1

Hermite or Legendre ?

* Question: Which one is correct ?

Gaussian pdf (Hermite polynomials) Uniform pdf (Legendre polynomials)

* Answer: Both. (Or, neither, for the pessimistic-minded.)
» They both interpolate the data correctly
= Data do not contain any information away from the line

Interpolation error, d = 3

Monte-Carlo grid

d
2
f=exp | —2 E X
q
q=1
10° .
L error
> ¢
p T - ™ arror
107! N
\‘t ------- .I.
. 1072 A e
g ~
QL =
1073
1074 |
100 200 300 400 500
N

error

—1
1
f= I I =+ x2
2 q
g=1
10° £
~~~~~~~ =
Tl
1072 & )
1073 ¢ pn SO
100 200 300 400 500




Interpolation error, d = 6

error

d
F=T]@+x)"
q
qg=1
SMOLYAK
104 ﬁ
]
’\
\ ~
10-5 |\
1078 | ) Tl
10-7
100 200 300




Minimal Multi-element SC: Discontinuity Detection

1.0 - - v -—w 1.0

S |
L]
L]
0.0
L]
L]
osb 8§
L]
L] L] 0
’“,]“. 0.5 00 0.5 1.0 -10 0 1.0
10 - - - 1.0
L]
[ J L] [ 1
f ' g2 2 ¢ 2 2 __2 202 ‘ ] (
och o .
och o . <
( b o ¢ (
och .
oh .
b | 838 8 L) S 8 S8 ] { (
0 L] [
1 . . 1

~1.0 - POPIPEPY - - - . - - ~1.0 a o a PG PREEEPN
=10 —0.5 0.0 0.5 1.0 —1.0 —0.5 0.0 0.5 L0

* Resolution level is specified by users







Summary

= [east Orthogonal Interpolation:
* Arbitrary number of nodes and arbitrary locations
* Mathematically rigorous
* Constructible using simple linear algebra

= Open (and “bigger”) issues
* Good selection of nodes ?
e Error estimation ?

= A highly flexible method for practical simulations

= References:
* Orthogonal least interpolation. (Narayan and Xiu, 2011)
* Discontinuity detection.
(Archibald et al, JCP 09, Jakeman, et al, JCP, 2010)
* Minimal element SC. (Jakeman, Narayan, Xiu, 2011)




