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Gaussian processes

Gaussian process models are a fundamental tool in spatial statistics and
statistical analysis of computer experiments.
Observational and computer-generated datasets often have spatial and
temporal aspects and the resulting datasets can be enormous.

I MODIS measures light intensity in 36 spectral bands at � 60 million
locations daily.

I Computer models (climate models, high fidelity models for advanced
nuclear reactors) can produce even larger datasets.

Gaussian process models can be used to

I describe/characterize the fluctuations in these processes

I predict unobserved values of the process and provide prediction
uncertainties

I can serve as a building block for more complex models (e.g., for land use
classification based on LANDSAT data).
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A process Z on a domain D is called Gaussian if, for every x1; : : : ; xn 2 D,
W = (Z(x1); : : : ;Z(xn)) follows a Gaussian, or multivariate normal
distribution: its probability density is of the form

p(w) =
1

(2�)n=2jK j1=2 exp


�1

2
(w � �)K�1(w � �)

ff

for some mean vector � and positive definite covariance matrix K , in which
case, say W � N(�;K).
Thus, the process Z is determined by

I its mean function �(x) = EZ(x)

I its covariance function K(x ; y) = covfZ(x);Z(y)g
for all x ; y 2 D.
In practice, � and/or K will be partially unknown and need to be estimated
from observations.
This talk focuses on:

I estimation of K when specified up to some finite-dimensional �.
I Assume � = 0 for simplicity.
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Maximum likelihood estimation

A standard and generally effective way of estimating unknown parameters in a
statistical model is via maximum likelihood:

Likelihood function: given �, suppose p�(w) is the joint density of the
observations. Given observations w , the likelihood function is just p�(w)
viewed as a function of �.
Maximum likelihood estimate (mle): �̂ is called an mle of � if it maximizes
p�(w) over all possible �.
Standard asymptotic theory says that when the data are highly informative
about �, one often has

�̂ � N(�; I(�)�1);

for I(�) the Fisher information matrix, defined as

I the covariance matrix of the score function: @
@� log p�(w).

I Often cannot improve nonnegligibly on mle.
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Computation

Exact computation of the likelihood for n irregularly sited observations
generally requires O(n3) computation and O(n2) memory.

Options for large n:

I Use model that reduces computation and/or storage.

I Use approximate methods.

I Both.

Goal of project is to be able to use these models on petascale data.

I Even for terascale (n � 1012) data, probably need single-pass methods if
want to fit global model.

What would be lost by fitting a bunch of local models?

Michael Stein, Jie Chen and Mihai Anitescu Scalable maximum likelihood estimation for Gaussian processes



Models that reduce computation

There are many models that can reduce computations even for irregularly sited
observations:

I Compactly supported covariance functions

I Reduced rank covariance functions

I Markov models

Each has their strengths and weaknesses, but all can lead to making unnatural
assumptions about the process.
I would rather approximate the likelihood than use what I consider a less
appropriate model.

An approximate answer to the right problem is worth a good deal
more than an exact answer to an approximate problem.

John Tukey
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Approximate computation

Spectral methods (Whittle likelihood).
I For gridded data and stationary processes, can use fft, so

I fast
I storage needs linear in number of observations
I considerable theory showing it is statistically efficient.

I Can use for nonstationary and/or ungridded data, but not as
effective/efficient.

Various forms of composite likelihood:

Y

j

p�(sj j cj)

for subsets sj and cj of the observations.

I Combine local and sparse subsets of data (Caragea and Smith, 2007).
I s1; : : : ; sm partition of data; cj � (s1; : : : ; sj�1) (Vecchia 1988; Stein, Chi

and Welty 2004).
I Best approach in terms of accuracy per flop?
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Iterative solution of linear equations

Kriging and computing quadratic form in likelihood requires solving Kx = y for
covariance matrix K .

Iterative methods effective if

I multiplying vector by K is fast

I condition number (ratio of largest to smallest eigenvalue) �(K) of K is
small.

Under fixed domain asymptotics, generally �(K)!1 as sample size increases.

I Increase can be rapid if process smooth.

With evenly spaced observations in time, could prewhiten data.

I If truth is random walk, then first differences iid and �(K) = 1 for
differenced data.

Can we do something similar for more general models, irregular observations or
spatial data?
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Results from Stein, Chen and Anitescu (under review at SIMAX):

Z on real line with spectral density f satisfying

f (!)!2 bounded away from 0 and 1 as ! !1:

I Condition says process is not too different from Brownian motion.

Observations arbitrarily located on some fixed, bounded interval.

Let L be filter matrix for normalized first differences.

Theorem: There exists Cf <1 such that, for any set of observations of Z in
[0; 1],

�(LKL0) � Cf : (�)
Note: Cf is independent of the sample size n.

Can add row to L to get matrix L̃ such that

I L̃ is full rank

I (�) holds for L̃.
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Analogous result for processes not too different than integrated Brownian
motion:

Z on real line with spectral density f satisfying

f (!)!4 bounded away from 0 and 1 as ! !1:
Now let L be filter matrix for normalized second differences.

Theorem: There exists Cf <1 such that for any set of observations in [0; 1]

�(LKL0) � Cf : (�)
Cf is independent of the sample size n.

Can add two rows to L and get full rank L̃ for which (�) holds.

Proofs make use of results on equivalence of Gaussian measures(!)
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More than one dimension?

I Now much harder to handle irregular observation locations.

Suppose Z is a process on Rd

I observed on grid 1
n
(j1; : : : ; jd) for 0 � jk � n and 1 � k � d

I with spectral density f satisfying

f (!) � (1 + j!j)�4p

for some positive integer p > 1
4
d .

If apply discrete Laplacian p times to the observations, then the condition
numbers of the resulting covariance matrices are bounded in n.

I Number of observations reduced from (n + 1)d to (n + 1� 2p)d .

I Should be possible to augment filter matrix as in one dimension, but not
so clear how.
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If spectral densities aren’t like j!j�2p (for d = 1) or j!j�4p (d > 1) for an
integer p, then

I shouldn’t expect simple filters to yield bounded condition numbers

I but empirical results show can still improve conditioning a lot.

Iterative methods can work well on matrices with a few extreme eigenvalues,
which preconditioning can produce quite broadly.

Can we use these iterative methods to help with likelihood computations?

I Likelihood requires log jK j.
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Solve score equations instead?

1

2
z 0K(�)�1 @K(�)

@�i
K(�)�1z � 1

2
tr


K(�)�1 @K(�)

@�i

ff
= 0

First term requires only one solve.

Instead of log determinant, need

I for each component of �,

tr


K(�)�1 @K(�)

@�i

ff
;

which requires n solves for exact calculation.

Approximate by the unbiased estimate

1

N

NX
j=1

uT
j K(�)�1 @K(�)

@�i
uj ;

where uj = (uj1; : : : ; ujn)
0 is random vector with ujk ’s iid and

Pr(ujk = 1) = Pr(ujk = �1) = 1
2
.

I If don’t compute loglikelihood, what do you do if solution not unique?
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How large does N (the number of uj ’s) need to be to yield an accurate
approximation to mle?

I If need N comparable to n, then this approach not attractive.

For z the vector of observations,

g�(z) =
1

2
z 0K(�)�1 @K(�)

@�i
K(�)�1z � 1

2N

NX
j=1

uT
j K(�)�1 @K(�)

@�i
uj = 0

is a set of unbiased estimating equations for �:

E�g�(z) = 0;

where E� means to average over z (given �) and the uj ’s.
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Define the matrices

A = E�
@
@�

g�(z)

and
B = covfg�(z)g:

“Standard theory” of estimating equations shows (�̂N is solution of approximate
score equations)

�̂N � � � N(0;A�1BA�1);

as n increases, although this result may not apply under fixed domain
asymptotics.

The score equations yield optimal estimating equations with A = B = I(�), the
Fisher information matrix. Here,

I A = I(�) as for score equations

I B = I(�) + 1
N

J(�) > I(�).
Can prove J(�) � f�(K)+1g2

4� I(�).
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Estimating equations are asymptotically optimal if, as n!1,

BI(�)�1 = I +
1

N
J(�)I(�)�1 ! I :

I If �(K) bounded in n, N !1 suffices.
I Don’t need N comparable to n!

I Indeed, for bounded �(K), N = 1 yields equations with optimal rate as
n!1.

I If that seems shocking, note method is exact with N = 1 if K(�) diagonal.

I Filtering first to control condition number helps in two ways:
I Reduces number of iterations needed in iterative solver.
I Reduces need for large N.

The bound J(�) � f�(K)+1g2
4� I(�) can be quite conservative.

I J(�) � I(�) if K(�) = �0I + �1K1 for all K1.

J(�) can be further reduced by choosing uj ’s not independent.
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Example

Stationary Gaussian random field on R2 observed on n � n square grid (so
m = n2 observations) with spacing 100

n
.

Model for autocovariance function:

p
2r�(x)K1

`p
2r�(x)

´
; where r�(x) =

s
x2

1

�2
1

+
x2

2

�2
2

;

K1 is modified Bessel function and � = (7; 10) is truth.

Spectral density f satisfies f (!) � (1 + j!j)�4, so if apply Laplacian once,
covariance matrices

I have condition number bounded in m

I are BTTB, so multiplication is fast

and algorithm scales nearly linearly in m.

Use approximate score function with

I N = 100 for all m.

I Intervals indicate uncertainty due to using finite N.

As theory predicts, fixed N leads to decreasing uncertainty as m increases.
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One-pass methods

Look at data block by block and summarize the information about K(�) from
that block so that don’t have to go back to raw data again.

Simple example:

I Divide data into B blocks.
I Within each block, approximate the loglikelihood (or score) function,

which is a sufficient statistic.
I Mle of � and observed information matrix an adequate approximation?
I If not, store more complete representation of loglikelihood function. Adding

loglikelihoods across blocks reduces storage with little loss of information?

I Save a few observations (or other summaries) from each block to recover
information at larger scales.

When might this procedure do asymptotically as well as full likelihood?

I “Vecchia” version of this may be more efficient statistically but not as
simple. Not so easy to parallelize.

For petascale data, probably need more than two “layers.”
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Further thoughts

Opportunities to combine approaches?

I Tapering (to induce sparseness) together with filtering (to improve
conditioning).

I Using various methods for variance reduction in simulations in stochastic
algorithms (doing calculation for many �).

Massive datasets generally show clear nonstationarity and/or non-Gaussianity,
so need for good statistical methods won’t disappear with increasing sample
sizes.

Some standard methods in numerical linear algebra (iterative approaches,
multipole, multigrid) underutilized by statisticians?

Some ideas from probability and statistics (equivalence of Gaussian measures,
asymptotics of kriging) underutilized by numerical analysts?
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