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Computational seismology

puy = divo +f

» u=u(x,y,z,t) displacement vector (u = (v v w))
» f =f(x,y, z,t) forcing = earthquake model
> stress tensor:

2+ Nux puy + vi)  pluz + wy)

o= | mluy +v) Qu+Avy plvz+wy)

pluz +wy)  p(ve +wy) Cu+ N)w,

> p=p(xy,2), p=p(x,y,z), A=A

(x,y,z) mtrl.

prop.




Domain and wave types

Computational domain
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Traction free boundary condition at surface.

Pressure wave with speed ¢, = /(21 + \)/p.

Shear wave with speed ¢s = /u/p.
Wave speed ratio c,/cs > /2.
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Rayleigh waves on surface, slower than P- and S-waves.



Topography handled by curvilinear grid

Grid refinement for depth varying wave speeds.



Resolution requirements

min Cs

h=
Pf
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Grid spacing h

v

Points per shortest wavelength P

v

Highest frequency f

v

Material shear wave speed ¢

Typical values: f =10 Hz, ¢ =300 m/s, P = 15 (second order),
P =7 (fourth order), gives

h=2m (2nd order) h=4.29m (4th order)

Domain size 200 km — 100,000 pts/dimension (2nd) 46,620 (4th)



Objective

This work (new): 4th order accurate energy conserving method.

Previous work: 2nd order accurate energy conserving method.
Extensions to

» Curvilinear grids
» Far field boundaries
» Mesh refinement

» Viscoelastic model



Energy conserving methods for the elastic wave equation

E" discrete energy at t,, integral over space, conserved when f =0
EN — Enfl — _ EO
Compatibility with norm, ci||u"||p < E™ < col|u”||n gives stability,

||u”||h S En/Cl =...= EO/Cl S c2/(:1||u0]|h

» Stability for inhomogeneous material, real b.c., any ¢,/cs.

» Stable for long time integration

» Dissipation free

» Robust code, no numerical parameters to tune, but must be

careful to not introduce unresolved frequencies



Energy estimate gives long time stability
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Standard stability gives convergence on 0 < t < T with T fixed.



Example: Wave equation with mixed derivative term

ure = (2auy + auy)x + (aux + 2auy),, (x,y) € 0,1, t >0
a = a(x,y) > 0 variable coefficient. Boundary conditions:

u=0 at x=0
2ux+uy:0 at x =1
u(x,y,t) = u(x,y +1,t) (periodic in y)



Energy estimate

1d

oo (\|ut|| + (ux, auy) + (ux + uy, a(ux + uy)) + (uy, auy)) =0

(Note: Non-negative terms give L? estimate)
Derived by partial integration:

1d

2dtHUt|| (utyutt):---:
1d
~ 33 ((ux,2auy) + (ux, auy) + (uy, auy) + (uy,2auy)) + B. T

N— /7N

Energy terms: (u.,auy) + (ux + uy, a(ux + uy)) + (uy, auy)
B.T. = usa(2uy + uy)|x=1 — ura(2uy + uy)|x=o0 zero by b.c.



Discretization

Cartesian grid with constant spacing h.
Centered finite difference operators

du(x;)/Ox — Douj, i=1,...,N
satisfying summation-by-parts
(u, Dov)p = —(Dou, v)p + unyvy — urvy
in a discrete, weighted, scalar product (u, v). Further notation:
Dyu; = (ujy1 — uj)/h, D_u; = (uj — uj—1)/h.

In two dimensions: D(gx) uj j and D(()y)u;J.



Discretization

(auy)x =~ (()X)(aD(()y)u) and (auy)x ~ D(()X)(aD(()X)u) same energy
estimate as for PDE possible, but
» Energy not positive definite, norm estimate not possible.

» Boundary condition 2uy + u, = 0 implicit.

Second order method (auy)x ~ D, (aj_1/,D—u;j), where Energy
estimate based on ,
D.(aj-1/2D-u;) = Do(a;Douj) — % D4 D—(a;D4 D_uy),

\

Square completion with x-y terms  Keeps energy pos. def.

Use of ghost points, gives explicit discrete b.c. with no boundary
modification of D, D_.



Fourth order accurate operator

h4
(alJX)X ~ G(a, U)J = Do(anguj)+1—8D+D_D+(aj,1/2D_D+D_uj)
h6
— m(DJr D_)?(aj(D+D-)?u;) + boundary modifications

G is five point wide operator away from the boundary.

Dy SBP operator of order 4/2, needed for xy-derivatives.

G also order 4/2. Boundary modified at j =1,...,6.
B.T.=0 in SBP is 4th order accurate b.c. — 4th order error.
Boundary modification of (D4 D_)3 gives first order errors
that can be made to cancel first order errors of Dy(aDou).

Can expand G(a,u); = Z?n:l Zi:l Bj k,maktm, j=1,...,6.
Coefficient tensor 8 with 129 non-zero elements out of 384.
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G uses ghost points, Dy does not.



4th order P-C time discretization gives energy conservation

Can prove time discrete energy conservation:

En+1/2 _ Enfl/Z.

Method stable (energy positive) for CFL < 1.3. No stiffness for
high order.



Numerical examples

Elastic wave equation, 2D

puee = ((2p + A ux)x + (Avy)x + (uvx)y + (puy)y
PVit = (,UVX)X + (,Uuy)x + ()\Ux)y + ((2:U' + )‘)Vy)y

0<x<Ly,0<y<lL,t>0.
Initial data: u(x,y,0) and ut(x,y,0) given.
Boundary data: y-periodic, with Dirichlet b.c. on x = L, and

(2u+ Nux+Avy, =0 x=0
p(v +uy) =0 x=0



Energy test with random material

pl,y) =440 p(x,y) =240 Xx,y)=2(r*—2)+0

Random variable 6 € [0,1]. Approximate wave speed ratio
r = cp/cs. Initial data also random numbers.
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Energy change per time step. Total > 220,000 steps.
¢p/cs arbitrarily large.



Rayleigh waves

Surface waves at x = 0, solutions us traveling wave in y and
decaying as e~ into the domain.
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, A, and p constant.



34 seconds vs. 54 hours CPU time
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Error vs. CPU time

w = 0.001, error 10™* need 34 seconds with 4th order scheme, 54
hours with 2nd order scheme.



Rayleigh waves

2nd order method 4th order method

10° : 10° :

20

Max arrar




Summary and future directions

» 4th order accurate non-dissipative difference scheme, L2 norm
stable with heterogeneous material and boundary conditions.

» 4th order in both space and time.
» Significant savings in computational resources.

» High order second derivative approximation of (u(x)ux)x, with
norm stable boundary closure, useful in other applications.

» To be implemented into the 3D WPP solver.

» To be used in new solver for source and material inversion,
using adjoint wave propagation.
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