
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,!
A wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy‘s!

 National Nuclear Security Administration under contract DE-AC04-94AL85000.!

Towards Certificates for Integer 
Programming Computations 

Robert Carr, Sandia National Laboratories 
Harvey Greenberg, U. Colordo, Denver 

Ojas Parekh, Sandia National Laboratories 
Cynthia Phillips, Sandia National Laboratories 

SNL ASCR Discrete Math/optimization 
research program 



Slide 2 

(Mixed) Integer Programming (IP) 

Min 
Subject to: 
 
 
 
 
 
 

• (Easily) express NP-complete combinatorial optimization problems 
–  Resource allocation, study of natural systems 

• PICO: SNL’s massively parallel solver 
•  Instance-specific proofs of quality 
• Benchmarking heuristics, study structure 

cTx

! 
  

! 

Ax " b
! # x # u
x = (xI ,xC )
xI $ Zn    (integer values)
xC $ Qn   (rational values)



MIP Applications (Sample) 

• Sensor placement (municipal water systems, roadways) 
• Network Interdiction (vulnerability analysis) 
• Scheduling quantum error correction (quantum 

computing architecture) 
• Management of unattended ground sensors 

–  Volcanoes, subway tunnels, building integrity 
• Bioinformatics: protein structure prediction/

comparison, protein-protein docking, protein folding 
• Meshing (for simulating physical systems) 
• Space-filling curves – preprocessor for fast heuristic 

node allocator for MP machines 
• Energy system and energy/water planning 
• DOE enterprise transformation 
• Conference scheduling, reviewing allocation 
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MIP Certificates 

• Making irrevocable, expensive and/or critical decisions 
• Confidence (proof) computation is correct 

–  Implementation errors 
–  Numerical issues 

• Certificate 
–  External program can check correctness (within tolerance) 
–  Faster and simpler to check than original computation 

• TSP example: Applegate, Bixby, Chvatal, Cook, Espinoza, 
Goycoolea, Helsgaun (ORL, 2009) 

• MIPLIB2010 exact solution checker 
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Linear programming (LP) relaxation of an IP 

Min 
Subject to: 
 
 
 
 
 
 

•  LP can be solved efficiently (in theory and practice) 
•  LP optimal gives lower bound 
 

cTx

! 
  

! 

Ax = b
! " x " u
x = (xI ,xC )
xI # Zn    (integer values)
xC # Qn   (rational values)
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Linear programming Certificate 

Primal LP: 
 
 
 
 
LP Dual: 
 
 
 
At optimality cx* = y*b (if both primal and dual feasible) 
(x*,y*) is a certificate for the LP. Fast check.  
! 

max yb
subject to yA " c
                y # 0

! 

mincx
subject to Ax " b
                x " 0

Primal feasible 

Dual feasible 

cx* = y*b (opt for both) 
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Certificate from Branch and Bound Tree 

  x k = 0   x k = 1

  x i = 1

  x j = 1  x j = 0

  x i = 0

IP optimal value z	



fathomed	

 LP infeasible	



	


	



Dual feasible y st 
yb > z 
OR LP opt is integer feasible 

Consider 
min xk for parent 
Give yb > 0 
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Strengthen LP Bound with Cutting Planes 

Original LP	


Feasible region	



LP optimal solution	



Cutting plane	


(valid inequality)	



Integer optimal	



• Make LP polytope closer to integer polytope 
• Use families of constraints too large to explicitly list 
• Separation algorithm: efficiently determine if all constraints are 

satisfied, or return a violated inequality 
• Make progress while minimizing/delaying branching 



Branch and Bound for Integer programming 

• Branch and bound has two purposes 
–  Find the optimal solutions 

• Feasible leaf 
• Heuristics 

–  Prove optimality 
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Bound ≤ opt 
Proof tree 

Bound > opt 
Search for opt 

Frontier 



Brute Force Certificate 

• Optimal Solution 
–  Verifier checks feasibility 

• For every node on the frontier 

–  Branching decisions 
–  Set of active (binding) cuts 

• Removing 1 cut è 
bound too low 

–  Proof of cut correctness 
–  LP certificate 
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Bound ≤ opt 
Proof tree 

Bound > opt 
Search for opt 

Frontier 



Brute Force Certificate – Which Frontier? 

• Save B&B tree and cut back to 
frontier 

• Rerun B&B pruning with the 
optimal value 

–  May be be smaller 
• Old miplib enigma 
• 43% avg reduction 
• 2.3% to 96.8% 

Preliminary! 
–  Can bias search 

• Solution structure 
• Gradients 

–  Can do in parallel 
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Bound ≤ opt 
Proof tree 

Bound > opt 
Search for opt 

Frontier 

Proof-only tree 



Brute Force: Proof of coverage 

• Subproblems must cover the feasible space 
• For simple variable bounds (x=0, x=1), give branching tree 

–  In principle can let the verifier check from frontier bounds 
• Simple branch on constraint:  
• User defined branching 
•  In general can prove uncovered regions empty 
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X1 X2 X3 

ax ! b and ax " b



Cut Certificates 

• Best case: class-specific cuts 
–  Relies on theorems 

• Example: TSP 

Slide 13 

min cij! xij
• Subject to: xij

i
! = 2    "j

xij # 0,1{ }

Disconnected 
subtours 

Should have at least 
2 edges between each 
Partition of nodes 



Example: Traveling Salesman Problem 
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S S

Useful if LP for relaxation edge weights xij
*

for this cut < 2 

 subtour elimination contraint:

xij
(i, j )!E
i!S, j!S

" # 2

• Separate with min cut (efficient using LP values) 
• Certificate is the cut itself or S 



Traveling Salesman: Cut examples 

• TSP has lots of cuts that are structural 
–  Relies on theorems 

• Proof of correctness is proving structure: graph isomorphism 

–  Map nodes to roles 
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Hypo-Hamiltonian 
Comb 

(Lodi) 



Example: Gomory Cuts 

• Standard proof of validity is nontrivial 
• Naïve certificate:  

–  Certificate: tableau row 
–  Verification: check if in Gomory cut form and apply 

standard proof/derivation to tableau row 

Tableau row: xB + aixi = a0!

 Gomory cut: " fixi
fi# f0

! +
f0 (1$ fi )
1$ f0

xi % f0
fi> f0

! ,

                       where  fi = ai $ ai&' () and f0 = a0 $ a0&' ()



A Better Certificate 

• Every valid ineq generated as positive combination of facets: 

• Can strengthen valid ineq by rounding (assuming      
integer): 

 
 

xi

aixi! " f # ai$% &'xi! " f # ai$% &'xi! " f$% &'

e.g. 0.9x1 + 0.8x2 !1.1" x1 + x2 ! 2, which cuts off (0.6, 0.7)

          Input:  ax ! !  valid for {x : Ax ! b}
  Certificate: "#" ! 0 s.t. "T Ax ! "Tb implies ax ! !
Verification:  a ! "T A and "Tb ! !  
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Proofs for arbitrary cuts 

Original LP	


Feasible region	



LP optimal solution	



Cutting plane	


(valid inequality)	



Integer optimal	



•  Prove region “cut off” (complemented cut) has no better integer points  
•  Can optimize with cut as the objective 
• Generally recursive (but should be simpler)  
•  Can use previously proven cuts for this node if they help 

Empty? 



Integer Infeasibility Computations 

• Useful in 3 possible ways 
–  Cut correctness 
–  Branching correctness 
–  The full proof (objective cut from opt on original problem) 

• Are these easier to solve for cut complements? 
–  Benefit if LP optimal has small violation? 
–  Benefit from “knowing” region is empty? 

• Note: Can remove redundant constraints 
• For our research, creating EmptyLib, a library of infeasible IP 

problems generated by certificate computations 
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Gomory Cuts at Integer Optimal 

•  In principle at most n cuts at the integer optimal to make LP 
integer feasible 
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Gomory Cuts at Integer Optimal 

•  In principle at most n cuts at the integer optimal to make LP 
integer feasible 

• “Just” prove these cuts are correct 

–  Hermite Normal Form may be relevant 
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Numerical Issues 

•  Inexact arithmetic requires tolerances: constraint feasibility, 
integrality, gap, etc 

–  Every IP or LP solver defines differently 
• Exact arithmetic (e.g. Applegate, Cook, Dash, Espinoza) 

–  Limited only by memory 
• Can be huge (Kramer’s rule, value of determinants) 
• Exact solvers start with approximation of floating point 

• Can do some things to help in practice during computations 
(fathoming) 

–  Fix integer values and resolve LP with tighter tolerances 
–  If same basis, tighten more (to (|basis determinant|)-1) 
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Groebner Basis 

• Given an integer feasible solution, improving step 
–  In nullspace of contraint matrix A 
–  Takes integer point to integer point 

• Groebner basis: basis for all such vectors 
–  Can be exponentially large 
–  Considered algorithmically 
–  We consider as test set 

• Requires provably complete set 
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Ax = b 



Hilbert’s Nullstellensatz 

• Certifies infeasibility of a system of polynomial equations 

• (0-1) IP feasibility can be formulated as polynomial system: 

• At most m polys in certificate, but polys may require large 
encoding size (e.g. large degree and dense) 

fi (x) = 0  !i =1,...,m
is infeasible iff  "!i  s.t.

1 = !i fi#

Ax ! b = 0
xi (xi !1) = 0  "i =1,...,n



Nullstellensatz Certificates 

• Goal: find small certificate of infeasibility if it exists 
• Can find certificate of fixed small degree if it exists 

–  Exhaustive search by incrementing degree  
[2010 ICS Prize: De Loera et al., 2008 & 2009] 

• Certificate (size) depends on formulation 
–  Adding redundant polynomials may help [De Loera et al.] 

• More inspired formulations for specific combinatorial 
problems, e.g. using roots of unity as discrete choices 

–  Interesting nontrivial formulations arising from our context? 
–  Automatic generation of redundant equations  

(analogue of cut generation) 

 


