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Electrical Resistivity

Perform a set of experiments by

Driving direct current signal into the ground
Measuring the resulting potentials created

Inverse problem to determine resistivity

min
u,v

1

2

N∑
i=1

‖Qiui − di‖2 +
1

2
α

∫
Ω

(v − v̄)2dΩ

subject to −∇ · (ev∇ui ) = qi x ∈ Ω i = 1, . . . ,N
∇ui · n = 0 x ∈ ∂Ω i = 1, . . . ,N∫

Ω uidΩ = 0 i = 1, . . . ,N

Discretize the operators
Solve finite-dimensional approximation
Problems available in the Haber-Hanson test collection
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Generic Formulation

Solve the optimization problem

min
u,v

f (u, v)

subject to g(u, v) = 0

u are state variables, v are design variables
λ are Lagrange multipliers on the constraint
Assume ∇ug(u, v) is invertible

Develop efficient methods with modest requirements

Evaluate objective and constraint residual
Evaluate gradient and Jacobian vector products
Linear solves with ∇ug(u, v) and ∇ug(u, v)T

Reuse iterative methods and preconditioners
Use a small number of linear solves per major iteration
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Linearly-Constrained Augmented Lagrangian Method

1 Given uk , vk , and λk
2 Choose ρk and approximately solve

min
u,v

m(u, v) ≡ f (u, v)− g(u, v)Tλk +
ρk
2
‖g(u, v)‖2

subject to Ak(u − uk) + Bk(v − vk) + gk = 0

gk ≡ g(uk , vk)
Ak ≡ ∇ug(uk , vk) and Bk ≡ ∇vg(uk , vk)

3 Calculate λk+1
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Newton Step Toward Feasibility

Solve the linear system

Akdu = −gk

If no solution or gT
k Akdu ≥ 0 then enter feasibility restoration

Choose ρk so that du is descent direction for merit function

ρk ≥ max

{
ρk−1,

dT
u (AT

k λk −∇uf (uk , vk))

gT
k Akdu

}
Determine the step length

αk ∈ arg min
α≥0

mk(uk + αdu, vk)

Accept the step
u0
k = uk + αkdu

v0
k = vk
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Modified Reduced-Space Step Toward Optimality

Start with constrained optimization problem

min
u,v

mk(u, v)

subject to Ak(u − uk) + Bk(v − vk) + αkgk = 0

Form reduced-space problem

min
v

mk(uk − A−1
k (Bk(v − vk) + αkgk), v)

Perform a change of variables and simplify

min
dv

mk(u0
k − A−1

k Bkdv , v
0
k + dv )

Apply a limited-memory quasi-Newton method
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Limited-Memory Quasi-Newton Method

1 Solve the quadratic approximation

min
dv

1

2
dv H̃k,idv + g̃T

k,idv

g̃k,i is the reduced gradient

g̃k,i = ∇vmk(uik , v
i
k)− BT

k A−T
k ∇umk(uik , v

i
k)

H̃k,i is positive-definite reduced Hessian approximation

Based on properties of H̃k,i we can easily compute

dv = −H̃−1
k,i g̃k,i

2 Perform line search to determine step length βi
3 Update variables and Hessian approximation and repeat
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Full-Space Line Search

Avoid computing reduced-gradient in line search

Recover full-space direction

du = −A−1
k Bkdv

Linear constraint satisfied along full-space direction

Calculate the step length

min
β≥0

mk(uik + βdu, v
i
k + βdv )

Update
ui+1
k = uik + βkdu

v i+1
k = v ik + βkdv

9 / 17



Algorithm Overview
1 Determine u0

k and v0
k (one forward solve)

2 For i = 1, . . .
1 Compute reduced gradient (one adjoint solve)

g̃k,i = ∇vmk(uik , v
i
k)− BT

k A−T
k ∇umk(uik , v

i
k)

2 Update Hessian approximation using BFGS formula
3 Calculate the direction

dv = −H̃−1
k,i g̃k,i

4 Recover full space direction (one forward solve)

du = −A−1
k Bkdv

5 Find the step length βk with a line search
6 Update ui+1

k = uik + βkdu and v i+1
k = v i

k + βkdv
3 Accept the new iteration

Compute reduced gradient at final point (one adjoint solve)
Update Hessian approximation
Set λk+1 = A−T

k ∇umk(uik , v
i
k)
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Computational Cost

One forward solve per major iteration for Newton direction

One adjoint solve per minor iteration for reduced gradient

One forward solve per minor iteration for full step

One adjoint solve per major iteration for Lagrange multipliers

Hessian approximation carried over between major iterations
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TAO Implementation

Method implemented in Toolkit for Advanced Optimization

Employs PETSc for linear solvers and preconditioners
User provides code to evaluate needed functions
Available in upcoming TAO 2.0 release

Some computational details

Overall convergence tolerance of 10−4

Linear solver performed to relative tolerance of 10−4

Limited-memory quasi-Newton approximation

BFGS approximation with a rank-5 matrix
Scaling matrix updated using Broyden updates

Moré-Thuente line search

Based on cubic interpolation
Guarantee that iterates satisfy Wolfe conditions
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Test Problems

Haber-Hanson test problems

Elliptic – electrical resistivity
Hyperbolic – optical tomography
Parabolic – mass transfer

Discretizations and iterative methods given

Conjugate gradient method for symmetric matrices
Generalized minimum residual for non-symmetric matrices
Jacobi and successive over relaxation preconditioners

Problem Dimension Time-dependent # State # Design Total (n)

Elliptic 3 No m3
xme m3

x m3
x(me + 1)

Parabolic 3 Yes m3
xmt m3

x m3
x(mt + 1)

Hyperbolic 2 Yes m2
xmt 2m2

xmt 3m2
xmt
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Sensitivity to Linear Solver Accuracy
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Algorithm Scaling
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Strong Scaling of Elliptic Problem (mx = 96)
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Conclusion

Method is effective on the test problems

Requires minimal information from the user

No need for the Hessian of Lagrangian
Use same iterative method for forward and adjoint
Preconditioner swaps sides in adjoint solves

Cost dominated by (parallel) forward and adjoint solves

Preliminary results indicate good strong scaling

Available in upcoming TAO 2.0 release

http://www.mcs.anl.gov/tao

17 / 17

http://www.mcs.anl.gov/tao

	Motivation
	Algorithm
	Numerical Results

