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Motivation

A generic global optimization problem

min f (x)

subjec to hi(x) +
∑
t∈Ti

ait
∏
j∈Jt

xj ≤ bi , i = 1,2, . . . ,m

` ≤ x ≤ u

We seek a global optimal solution⇒ Need tight convex relaxations
We study techniques for relaxing the multilinear terms:

∏
j∈Jt

xj

Multilinear terms appear in many applications
Electricity transmission, nuclear core reload, chemical blending
processes, any problem with bilinear terms (nonconvex quadratic)
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Agenda

1 Comparison of existing linear relaxations

2 Term-cover relaxation approach

3 Constructing term-covers

4 Computational experience
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Comparison of existing linear relaxations

What do we relax?

Reformulated global optimization problem

min f (x)

subject to hi(x) +
∑
t∈Ti

aitzt ≤ bi , i = 1,2, . . . ,m

(x , z) ∈ X

Where T =
⋃

i Ti and

X =
{

x ∈ [`,u], z ∈ R|T | | zt =
∏
j∈Jt

xj , t ∈ T
}

We seek strong (linear) relaxations of X
With linear relaxations of f and hi yields LP relaxation
Ideal case: conv(X )
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Comparison of existing linear relaxations

McCormick [1976] relaxation of bilinear terms

Bilinear special case

B =
{
(x , z) ∈ [0,1]n × R|T |

∣∣∣ zij = xixj , ∀(i , j) ∈ T
}

Relaxation:

zij ≥ max{0, xi + xj − 1}, zij ≤ min{xi , xj}, ∀(i , j) ∈ T

Similar inequalities apply when x ∈ [`,u]
Inequalities define convex hull for individual terms
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Comparison of existing linear relaxations

Convex Hull

Let χ1, . . . , χ2n
be vertices of [`,u]

Convex hull extended formulation (Rikun 1997, Sherali 1997)

(x , z) ∈ conv(X ) if and only if there exists λ ∈ R2n

+ such that

2n∑
k=1

λk = 1, x =
2n∑

k=1

λkχ
k , zt =

2n∑
k=1

λkφt(χ
k ), ∀t ∈ T

where φt(χ
k ) =

∏
j∈Jt

χk
j

Good news: Polyhedral

Bad news: 2n variables

Luedtke et. al (UW-Madison) Relaxations of Multilinear Programs DOE 2011 6 / 25



Comparison of existing linear relaxations

Can we compromise?

Our goal: Find a relaxation that is
Stronger than McCormick
More compact than full convex hull

Related work
Bao, Sahinidis, and Tawarmalani (2010)
Semidefinite programming relaxations
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Comparison of existing linear relaxations

How much better can convex hull formulation be?

Results from L., Namazifar, and Linderoth (2010)
Consider a single bilinear function: z =

∑
(i,j)∈T aijxixj

Let G be a graph with edges defined by T , and χ be the coloring
number of G

If G is a bipartite graph, McCormick relaxtion ≡ convex hull
(Coppersmith, et. al.)
If aij ≥ 0, maximum McCormick error is within factor 2− 2/χ of
maximum convex hull error
For general bilinear, maximum McCormick error is within factor
2(χ− 1) of maximum convex hull error

Conclusion: Convex hull not always better, but may be significantly
better for “dense” problems
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Term-cover relaxation approach

Agenda

1 Comparison of existing linear relaxations

2 Term-cover relaxation approach

3 Constructing term-covers

4 Computational experience
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Term-cover relaxation approach

What’s a term-cover?

Definition
A finite collection of subsets of {1, . . . ,n}, C = {Cg}g∈G, is called a
term-cover of T if for all t ∈ T there exists g ∈ G such that

Jt ⊆ Cg .

T =
{
{1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3},
{2,4}, {2,5}, {3,4}, {3,5}, {4,6}, {5,7}, {6,7}

}
C =

{
{1,2,3,4}, {2,3,4,5}, {1,5,6,7}, {4,6}

}
Generalizes both McCormick and convex hull

McCormick relaxation: Vt = Jt , t ∈ T
Convex hull: V1 = {1, . . . ,n}

Luedtke et. al (UW-Madison) Relaxations of Multilinear Programs DOE 2011 10 / 25



Term-cover relaxation approach

Constructing a relaxation based on a term-cover

Idea: Introduce the convex hull formulation for each “group” in the
term-cover

Let {χg,k}2|Cg |

k=1 = Vert({`j ≤ xj ≤ uj , j ∈ Cg}) for all g ∈ G

Relaxation, TCC(X ), is given by:

xCg =
2|Cg |∑
k=1

λ
g
kχ

g,k ,

2|Cg |∑
k=1

λ
g
k = 1, ∀g ∈ G

zt =
2|Cg |∑
k=1

λ
g
k

∏
j∈Jt

χ
g,k
j , ∀g ∈ G, t ∈ T : Jt ⊆ Cg
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Constructing term-covers
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Luedtke et. al (UW-Madison) Relaxations of Multilinear Programs DOE 2011 12 / 25



Constructing term-covers

Building Good Term Covers

Overarching Goal

Get strong bounds fast

Questions
1 What should be the maximum size (σ) of elements of the term

cover?
(A): Not too big! You need 2σ variables for that element.

2 Which (original) variables should appear in the same element
of the term cover?

3 How many elements should the term cover contain?
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Constructing term-covers

Thoughts on Building Good Terms Covers

1 Variables from a dense part of the graph (hypergraph) associated
with the function should be in the same element

2 Covering terms multiple times can help
3 Terms with large coefficients may be more important

We (read Mahdi) tried lots of different strategies, but none did as
well as a simple greedy two-phase heuristic
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Constructing term-covers

Two-phase heuristic

Parameters: Max size σ ≥ 2, Augmentation factor ν ≥ 1
Data: Terms Ti , weights wi
Graph: A node for each variable, edge for each term

1 Construct an initial term-cover
Heuristically choose a max-weight subgraph of size ≤ σ
Remove covered terms and repeat

2 Augment the term-cover
Adjust weights according to how many times each term has been
covered
Heuristically choose a max-weight subgraph of size ≤ σ
Repeat until have ν times more elements than initial term-cove

Empirical tests: σ = 6 and ν = 2 are reasonable
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Constructing term-covers

Is It Good?

MANY different methods were tried for building good term-covers
This greedy two-phase heuristic was by far the best

A Small Experiment
Compared bounds to 40 random term covers of the same size.
Greedy heuristic always beats the best of the 40 random
covers.
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Computational experience
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Computational experience

Computational Experiments

Questions to Answer
1 How close is term-cover relaxation to convex hull relaxation?
2 Compare “best” term-cover relaxation to McCormick and SDP

relaxations

SDP Relaxation for QCQPs
Introduce all “product variables”, yij = xixj

Relax the constraint Y − xxT = 0 to Y − xxT � 0
This is the state of the art relaxation for nonconvex quadratic
problems
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Computational experience

Test Instances

Box-constrained QP: (spar-n-density-#)

min
x∈[0,1]n

{xT Qx + dT x}

Quadratically Constrained QP: (qcp-n-#cons-density-#)

min
x∈[0,1]n

{xT Qx + dT x | xT Qix + d t
i x ≤ bi ∀i = 1, . . . ,m}

Also tested: QP with linear constraints, quadrilinear programming.
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Computational experience

Computational Details

Relaxations implemented in
MINOTAUR: Mixed Integer Nonlinear
Optimization Toolkit: Algorithms,
Underestimators, Relaxations

Lead developer: Ashutosh Mahajan

LP’s solved with Coin’s CLP
SDP’s built/solved with
YALMIP/SeDuMi
Quadratic terms relaxed in a manner
similar to BARON:

Approximate z = x2, x ∈ [`,u] with
one “secant” on top, and κ(= 5)
linearizations underneath.
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Computational experience

How Close is Term Cover to Convex Hull?

ν = 1 McCormick Term-Cover 4 Term-Cover 8 Convex Hull
Problem G% T G% T G% T G% T

qcp-15-05-050-1 23.8 0.1 23.8 0.1 23.8 0.2 23.8 23.9
qcp-15-05-050-2 41.4 0.1 41.3 0.1 38.1 0.1 38.1 29.3
qcp-15-05-075-1 24.8 0.1 16.7 0.1 16.7 0.2 16.7 30.2
qcp-15-05-075-2 19.8 0.1 19.8 0.1 19.8 0.1 19.8 24.9
qcp-15-05-100-1 99.2 0.1 47.7 0.1 47.7 0.1 47.7 21.7
qcp-15-05-100-2 101.4 0.1 58.7 0.1 49.8 0.1 49.8 27.8
qcp-15-10-050-1 115.3 0.1 115.3 0.1 115.3 0.2 115.3 26.6
qcp-15-10-050-2 31.2 0.1 31.2 0.1 31.2 0.2 31.2 30.5
qcp-15-10-075-1 137.1 0.1 95.8 0.1 80.6 0.2 80.6 26.7
qcp-15-10-075-2 21.1 0.1 11.7 0.1 11.7 0.2 11.7 24.3
qcp-15-10-100-1 1.5 0.1 0.0 0.1 0.0 0.2 0.0 27.2
qcp-15-10-100-2 1078.7 0.1 697.9 0.1 492.6 0.2 478.5 28.2

G%: Gap to optimal solution value. (Instances solved by
Couenne)
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Computational experience

Box QP – Term-Cover vs. McCormick

Red points correspond to large instances: 70 – 100 variables
Blue points correspond to small and medium instances: 20 – 60 variables
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Computational experience

Box QP – Term-Cover vs. SDP

Surprising!

Linear term-cover relaxation is competitive with SDP relaxations.
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Computational experience

QCQP

SDP Term-Cover σ = 6, ν = 2 McCormick
Problems G% T G% T G% T

q020-025-1 12.1 1.5 17.0 0.2 17.2 0.0
q020-025-2 13.8 0.4 28.9 0.3 28.9 0.1
q020-050-1 9.3 0.4 15.4 0.5 17.9 0.1
q020-050-2 11.1 0.4 16.8 0.3 43.9 0.1
q020-075-1 5.0 0.4 8.1 0.6 30.1 0.1
q020-075-2 15.5 0.3 18.4 0.4 58.6 0.1
q040-025-1 7.5 3.6 5.3 2.4 16.7 0.2
q040-025-2 18.8 4.0 7.7 15.5 27.3 0.6
q040-050-1 10.9 3.9 5.5 20.4 53.3 0.8
q040-050-2 7.9 4.3 4.0 13.2 23.3 0.9
q040-075-1 27.1 4.0 45.8 19.0 201.1 0.8
q040-075-2 19.4 3.9 24.7 14.3 133.9 0.8
q060-025-1 13.7 92.9 10.8 134.1 45.4 2.1
q060-025-2 22.5 84.7 30.7 168.4 63.3 2.7
q060-050-1 18.8 101.3 34.6 303.3 129.8 3.4
q060-050-2 14.5 94.8 23.0 222.4 91.1 3.2
q060-075-1 24.9 79.5 55.1 150.3 201.4 3.5
q060-075-2 21.8 95.7 51.7 103.1 191.3 3.7
q080-025-1 11.3 1467.1 12.2 659.4 39.0 6.1
q080-025-2 15.8 1515.6 25.5 1822.2 54.3 8.8
q080-050-1 29.1 1445.8 65.8 2112.7 186.1 10.6
q080-050-2 14.6 1599.4 36.1 1285.8 110.0 11.6
q080-075-1 24.2 1438.8 67.3 1166.4 206.3 11.8
q080-075-2 29.8 1378.5 83.2 1225.5 242.4 12.5

Average 16.6 392.6 28.9 393.4 92.2 3.5
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Computational experience

Parting thoughts

Key findings
Strong linear relaxations of multiliear terms are possible
Surprisingly competitive with SDP
Advantages of linear relaxations: fast re-solve, easy combination
with relaxation of other components

Continuing work
Embed relaxation into branch and bound scheme
Transform quadratic instances to better separate convex and
concave parts. (“Eigen”-reformulation)
Develop a dynamic term covering strategy

Potential to be faster and stronger
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