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Motivation

Uncertainty Quantification in Subsurface Flow

I CO2 Sequestration

I Contaminant Transport and Remediation

I Reservoir Performance Forecasting

Uncertainty in Conductivity Field

I Reasonable priors from geological assumptions

I Use available real world data (core samples, well data)

I Difficult to sample from posterior distribution



Model Problem

Steady State Single Phase Subsurface Slow:

q + k∇p = g in D ⊂ Rd, d = 1, 2, 3

∇ · q = 0

subject to suitable B.C.’s

I p is the pressure head

I q is the Darcy flux

I k is the hydraulic conductivity field



Model Problem

Uncertainty in p and q is typically modeled by taking k to be a
random field k (x, ω) on D × Ω.

The model problem can then be written as a 2nd-order elliptic
problem with stochastic coefficients.

−∇ · (k (x, ω)∇p (x, ω)) = f (x) in D × Ω

k (x, ω) is assumed to be log-normal with prior determined mean
and covariance structure.



Model Problem

k (x, ω) is log-normal. Y (x, ω) := log k (x, ω) is normal.

Assumed covariance structure:

E
[
Y (x, ·)Y

(
x′, ·
)]

:= C
(
x, x′

)
= σ2exp

(
−

d∑
i=1

|xi − x′i|p

γpi

)
.

γi is the correlation length in the ith direction.

Small γi’s indicate a highly heterogeneous material.



Uncertainty Quantification

Goal: Given prior assumptions about uncertainty in conductivity
field, quantify uncertainty in the solution, p (x, ω).

Method - Monte Carlo Simulation: Generate many realizations of
conductivity field. Solve deterministic PDE to obtain many
realizations of the solution.

E [Q (p; k)] =
1

N

N∑
i=1

Q(p(i); k(i))

where Q is some quantity of interest which depends on the
solution.

Need to generate samples of k (x, ω).



Sampling from the Prior

Expand Y (x, ω) in a Karhunen-Loeve expansion (KLE):

Y (x, ω) = E [Y (x, ·)] +

∞∑
k=1

√
λkφk(x) ξk(ω)

where (λk, φk) satisfy∫
D
C
(
x, x′

)
φk
(
x′
)
dx′ = λkφk(x) k = 1, 2, . . .

and the ξk’s are centered, uncorrelated random variables.

Truncate: YM (x, ω) = E [Y (x, ·)] +

M∑
k=1

√
λkφk(x) ξk(ω)



Sampling from the Prior

Use truncated KLE to generate realizations of k (x, ω):

1. Generate ξ
(i)
k from N (0, 1), k = 1, 2, . . . ,M

2. Form Y
(i)
M (x, ω) = E [Y (x, ·)] +

M∑
k=1

√
λkφk(x) ξ

(i)
k

3. Set k(i) (x, ω) = exp
[
Y

(i)
M (x, ω)

]
Note that the stochastic process describing k was constructed
based solely on prior assumption.

How can we incorporate real world data into the simulation?



Markov Chain Monte Carlo

Prior distribution, P (k), based on KLE and geological assumption.

P (k) is easy to sample from.

Suppose we want to condition samples on some data F .

Want to sample from posterior distribution, P (k|F ).

This is Difficult!



Markov Chain Monte Carlo

From Bayes Law: P (k|F ) ∝ P (F |k)P (k).

Define likelihood function: P (F |k) ∝ exp

(
−‖F−Fk‖

2

σ2
f

)

Then π (k) = P (k|F ) ∝ exp

(
−‖F−Fk‖

2

σ2
f

)
P (k)

Metropolis-Hastings Algorithm:

1. At state k generate k′ from transition probability q (k′|k).

2. Accept k′ as a sample with probability

α
(
k, k′

)
= min

(
1,
π (k′) q (k|k′)
π (k) q (k′|k)

)
Note: Each evaluation of π (k) requires deterministic PDE solve!



Markov Chain Monte Carlo

How do we sample from transition probability q (k′|k)?

One method is to use a random walk.

k′ is obtained from k by adding a uniform r.v. to each ξj

ξ′j = ξj + εj with εj ∈ U [−δ, δ] for j = 1, 2, . . . ,M

The model problem is solved using the new conductivity field and
k is either accepted or rejected.

May be hundreds of discarded proposals between each acceptance!

Must have efficient solvers to offset cost of discarded samples.
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General Multigrid

Discretize model problem using P1 finite elements over a
triangularization Th of D.

Represent conductivity field by piecewise constant functions over
each element.

Must solve linear system of equations A(k)x = b for many
realizations of conductivity field k.

For very rough k the solution of even one system may be difficult.

MCMC means k and k′ are in some sense close (random walk).

Goal: Build solver for A(k) that also works for A(k′).



General Multigrid

smoothing 

Finest Grid 

First Coarse Grid 

restriction 
prolongation 
(interpolation) 



Two-Level Spectral AMGe - Interpolation

Partition Th into set of agglomerated elements {T}.

Let {A} = {Ar}ncr=1 be a corresponding set of aggregates such
that each A is contained in a unique T .



Two-Level Spectral AMGe - Interpolation

Assemble the local stiffness matrices AT for each T .

Solve the local generalized eigenvalue problem for each T :

ATqk = λkDTqk, k = 1, . . . , nT

For a given tolerance θ ∈ (0, 1] select the first mT ≤ nT
eigenvectors such that

λk ≤ θλmax and λk+1 ≥ θλmax

Restrict local vectors to each aggregate A and orthogonalize{
pA1 ,p

A
2 , . . . ,p

A
m′
T

}



Two-Level Spectral AMGe - Interpolation

Local tentative interpolant is then PA =
[
pA1 ,p

A
2 , . . . ,p

A
m′
T

]
Global tentative interpolant is

P =


PA1 0 0

0 PA2 0

0 0
. . .

...
0 0 . . . PAnc

 ·

The final interpolant is obtained by pre-multiplying P by a suitably
chosen smoother:

P =
(
I −D−1A

)
P



Two-Level Spectral AMGe - Relaxation

We choose polynomial smoothers for their good parallelization
properties.

Let pν (t) =

ν∏
j=1

(
1− t

τj

)
. Note pν (0) = 1 and pν (τj) = 0

Define M−1 =
[
I − pν

(
D−1A

)]
A−1

Since pν (0) = 1 we have pν (t) = 1− tqν−1 (t) and so

M−1 = qν−1
(
D−1A

)
D−1

Note: M−1 does not depend on A−1 and is sym if A and D are.



Two-Level Spectral AMGe - Algorithm

TL - Algorithm

1. Define initial guess x

2. Pre-smoothing: x = x+M−1 (b−Ax)

3. Restrict residual: rc = P T (b−Ax)

4. Coarse solve: xc =
(
P TAP

)−1
rc

5. Correct current iterate: x = x+ Pxc

6. Post-smoothing: x = x+M−1 (b−Ax)

Assuming symmetric A and D and a zero initial guess, we can write

b 7→ B−1TGb = xTG

where B−1TG = M−1 +
(
I −M−1A

)
P
(
P TAP

)−1
P T
(
I −AM−1

)



Adaptive AMGe

Have BTG based on matrix A, {T}, {A}, and {q(T )
k }

Want to use BTG to solve problems involving A′ := A (k′)

Test: Replace A with A′ in TL-Algorithm and iterate on A′x = 0:

xk =
(
I −B−1TGA

′)xk−1
Monitor ‖xk‖A′ → 0. If convergence is good retain BTG

Otherwise, take xbad = xk and restrict it to AEs, xbadT



Adaptive AMGe

Solve the new local generalized eigenvalue problem for each T :

A′T zk = µkD
′
T zk, k = 1, . . . ,m′T + 1

in the subspace Span{qT1 , . . .qTm′
T
, xbad}. Choose zk’s satisfying

µk ≤ θ′µmax and µk+1 ≥ θ′µmax

Restrict local vectors to each aggregate A and orthogonalize{
pA1 ,p

A
2 , . . . ,p

A
m′′
T

}
Construct global P as before to obtain B′TG. Repeat as needed.
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Model Problem

−∇ · (k (x, ω)∇p (x, ω)) = 1 in [0, 1]2 × Ω

p = 1 on {x1 = 0} × Ω

p = 0 on {x1 = 1} × Ω

∇p · n = 0 on {x2 = 0, x2 = 1} × Ω

k (x, ω) is chosen from a log-normal prior with zero mean and

C
(
x, x′

)
= (5)2 exp

(
−|x1 − x

′
1|

0.1
− |x2 − x

′
2|

0.4

)
.

The first 500 terms in the KL-expansion are used.



Model Problem

Metropolis-Hastings MCMC is used to condition the conductivity
samples on flow data at 4 points in the domain.

The transition probability q (k′|k) is defined by a random walk
drawn from U [−δ, δ].

 0

 0.05

 0.1

 0.15

 0.2

 0  20  40  60  80  100

|| 
F

 -
 F

k 
||

Accepted Realizations



Solver Performance

At each Metropolis-Hasting step, the TL-Algorithm is used as a
stationary iteration to solve the resulting linear system.

A degree 4 polynomial smoother is used along with an initial
spectral threshold parameter of θ = 0.01.

A target convergence rate of ρ = 0.5 is defined and re-adaptation
automatically occurs if the performance falls below this threshold.

The solver stops when the relative residual has decreased by a
factor of 10−8.

The MCMC algorithm is run for 10K iterations.



Solver Performance

The table shows the performance of the adaptive TL-Algorithm as
well as the non-adaptive TL-Algorithm and standard Geometric
Multigrid. The fine grid contained 16K degrees of freedom
partitioned into 100 agglomerated elements.

δ MG TL-Alg. αTL-Alg. Adaptations Required

0.5 .91/4 .52/35 .24/35 124

1.0 .92/4 .65/30 .26/30 670

Values reported are the average convergence rate and the average
coarsening factor between the fine and coarse grids averaged over
10K MCMC iterations.
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Conclusions

I We’ve presented an adaptive two-level AMGe method that
can used to solve linear systems originating from 2nd-order
elliptic PDE with stochastic coefficients.

I The resulting method can be re-used when the new system is
in some sense close to the original.

I When the new system greatly differs from the original,
re-adaption can be preformed quickly and efficiently.



Future Work

I Extend the two-level method to multilevel via recursion.

I Use the coarse spaces generated by the method to compute
upscaled approximations of the fine-grid dynamics.

I Applications in the deterministic regime e.g. solution of
nonlinear PDE.
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