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Problem Statement and Assumptions

Diffusion equation −∇ · (a(x, ω)∇u) = f on D ⊂ Rd ,

with suitable boundary conditions

Initial Assumptions

Coercivity: 0 < α1 ≤ a ≤ α2 <∞ ⇒ well posed

Finite expansion: a(x, ξ) = a0 + σ
∑m

r=1 ar (x)ξr

Independence: {ξr = ξr (ω)} uncorrelated with density functions ρr (ξr ),

joint density ρ(ξ) = ρ1(ξ1)ρ2(ξ2) · · · ρr (ξr )

Stochastic Galerkin: FEM/FD in space,
Polynomial chaos of total degree p in ξ

−→ Requirement: Solve one large algebraic system Au = f

A = G0 ⊗ A0 +
∑m

r=1 Gr ⊗ Ar

Stochastic collocation: “level-p”
−→ Solve multiple systems of standard structure
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Multigrid Methods for the Stochastic Problems

I. Apply multigrid across spatial component (E. & Furnival)

Solving Au = f, A = G0 ⊗ A
(h)
0 +

∑m
r=1 Gr ⊗ A

(h)
r

[Ar ]jk =
∫
Dar (x)∇φk(x)·∇φj(x)dx , [Gr ]lq =

∫
Γ(Ω)

ξrψq(ξ)ψl(ξ)ρ(ξ)dξ

Fine grid operators: A(h), A
(h)
r spatial discretization parameter h

Course grid operators: A(2h), A
(2h)
r spatial discretization parameter 2h

One multigrid (two-grid) step:
for j = 1 : k

u(h) ← (I − Q−1A(h))u(h) + Q−1f (h) k smoothing steps
end
r (2h) = R(f (h) − A(h)u(h)) Restriction
Solve A(2h)c(2h) = r (2h) Coarse grid correction R = I ⊗ R
u(h) ← u(h) + Pc(2h) Prolongation P = I ⊗ P
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Sketch of convergence analysis: Use “standard” approach

e(i+1) = [(A(h))−1 − P(A(2h))−1R] [A(h)(I − Q−1A(h))k ] e(i)

Establish for all y

Approximation property
∥∥[(A(h))−1 − P(A(2h))−1R]y

∥∥
A(h) ≤ ‖y‖2

Smoothing property
∥∥A(h)(I − Q−1A(h))ky

∥∥
2
≤ ‖y‖A(h)

For approximation property: Introduce semi-discrete space H1
0 (D)⊗ T (p)

T (p) = discrete stochastic space
Weak formulation: a(u(p), v (p)) = (f , v (p)) for all v (p) ∈ H1

0 (D)⊗T (p)

Then:
∥∥[(A(h))−1 − P(A(2h))−1R]y

∥∥
A(h) = ‖u(hp) − u(2h,p)‖a
≤ ‖u(hp) − u(p)‖a + ‖u(p) − u(2h,p)‖a
≤ c‖y‖A(h)

Last step: from standard arguments based on approximability,
regularity for every realization in the semi-discrete space
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Mean-Based Multigrid

II. Apply multigrid to mean as preconditioner

Solving Au = f

Preconditioner for use with CG (Kruger, Pellisetti, Ghanem):

Mean Q = G0 ⊗ A0

A0 ∼
∫
Da0(x)∇φk(x)·∇φj(x)dx , G0 = I

Further refinement (Le Maitre et al.)

Use multigrid to approximate action of Q−1:

Q−1
MG ≡ I ⊗ A−1

0,MG
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Convergence analysis (E. & Powell):

Coefficient: a(x, ξ) = a0 + σ
∑m

r=1 ar (x)ξr

Coefficient matrix: A = G0 ⊗ A0 +
∑m

r=1 Gr ⊗ Ar

Mean-based preconditioner: Q = G0 ⊗ A0

Multigrid preconditioner: QMG = G0 ⊗ A0,MG

Theorem: For a0 = µ constant,

1− τ ≤ (w ,Aw)
(w ,Qw) ≤ 1 + τ

where τ = (σ/µ) c(p)
∑m

r=1

√
λr ‖ar‖∞.

If in addition the MG approximation satisfies β1 ≤ (w ,Qw)
(w ,QMG w) ≤ β2, then

(w ,Aw)
(w ,QMG w) = (w ,Aw)

(w ,Qw)
(w ,Qw)

(w ,QMG w) ≤
(

1+τ
1−τ

)(
β2

β1

)
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Comments

Establishes textbook convergence of multigrid, rate independent of
spatial discretization parameter h

Minimal dependence on stochastic parameter p.

Applies to any basis for stochastic space

Second method: simpler but more dependent on # terms m
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Alternative: Collocation Methods

Monte-Carlo (sampling) method: find u ∈ H1
E (D) s.t.∫

D
a(x, ξk)∇u ·∇vdx for all v ∈ H1

E0
(D)

for a collection of samples {ξk} ∈ L2(Γ)

Collocation (Xiu, Hesthaven, Babuška, Nobile, Tempone, Webster)

Choose {ξk} in a special way (sparse grids), then
construct discrete solution u(hp)(x, ξ) ∈ SE

h ⊗ T (p)

to interpolate {uh(x, ξk)}

Advantages (vs. stochastic Galerkin):
· decouples algebraic system (like MC)
· applies in a straightforward way to nonlinear random terms

Disadvantage: dimensionality ∼ 2p× (Galerkin) for comparable
accuracy
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Experimental Comparison

E., Miller, Phipps, Tuminaro

To the right: Accuracy

p = polynomial degree for Galerkin
level for collocation

Gaussian abscissas with linear
growth

Errors are comparable

p = 1

p = 2

p = 3

p = 4

p = 5

m = 4
uniform
density

Degrees of freedom

Below: Performance

p = 5

p = 4
p = 3

p = 2

p = 1
m = 3
uniform
density

Error

p = 6

p = 5

p = 4

p = 3

p = 2

p = 1

m = 5
uniform
density

Error
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Experimental Results: CPU Times

Performed on a serial machine with C code and
CG/AMG code from Trilinos
Truncated Gaussian density

Observation: Galerkin faster, more so as number of
stochastic variables (KL terms) grows

Galerkin Collocation
p m = 5 m = 10 m = 12 m = 5 m = 10 m = 12
1 .058 .147 .263 .069 .163 .218
2 .269 1.20 2.00 .532 2.13 3.17
3 1.20 13.14 24.50 2.41 16.99 29.31
4 3.50 53.79 121.61 8.31 102.60 200.94
5 6.51 117.73 24.56 515.74
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Discussion

Shows Galerkin formulation is tractable

In these circumstances, cheaper than collocation
But: intrusive

Requirements:

· Linear dependence on stochastic parameters

· Knowledge of joint density function for parameters
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Problem Statement

Diffusion equation −∇ · (c(x, ω)∇u) = f on D ⊂ Rd ,
with suitable boundary conditions

Diffusion coefficient c(x, ω) is a log-normal random field

k(x, ω) = exp(a(x, ω))

a(x, ω) = log k(x, ω) = a0(x) + σ
∑∞

m=1

√
λm am(x)ξm(ω)

≈ a0(x) + σ
∑M

m=1

√
λm am(x)ξm(ω)︸ ︷︷ ︸

Will use finite-term expression in sequel†

Complication: Galerkin much less straightforward when coefficient is
nonlinear in ξ.

†For simplicity, we will also take {ξm} to have truncated Gaussian distributions.
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New Approach: Convection-Diffusion Formulation

E., Ernst & Ullmann
Diffusion equation −∇ · (ea∇u) = f

Expand using product rule:

ea
(
−∇2u −∇a · ∇u

)
= f

−→ Convection-diffusion problem

−∇2u + w · ∇u = e−af , w = −∇a

N.B. This connection is long known, e.g., Varga et al., 1966
Presented in other direction: existence of velocity potential enables
recasting of convection-diffusion equation as diffusion equation

Key point:

w = −(∇a0 + σ
∑M

m=1

√
λm∇am(x)ξm) is linear in ξ
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Matrix structure

Extended weak formulation∫
Γ

∫
D
∇u · ∇v −

∫
Γ

∫
D
∇a0 v − σ

M∑
m=1

√
λm

∫
Γ

∫
D
∇am v =

∫
Γ

∫
D

e−afv

Generalized polynomial chaos discretization −→ coefficient matrix:

C = I ⊗ (L + N0) +
M∑

m=1

Gm ⊗ Nm

L discrete diffusion operator
N0 convection term from mean ∇a0

Nm convection terms from terms ∇am in expansion of ∇a

Advantage: matrix is sparse

Slight disadvantage: matrix is nonsymmetric

For iterative solution: use preconditioned GMRES
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Solution Algorithms for Convection-Diffusion Form

Linear system for stochastic Galerkin Cu = f

C = I ⊗ (L + N0) +
M∑

m=1

Gm ⊗ Nm

Right-oriented preconditioning:

Solve [CP−1]û = f using GMRES, u = P−1û

Options for preconditioning

Diffusion preconditioner: P = I ⊗ L, nξ decoupled diffusion
operators

Mean-based preconditioner: P = I ⊗ (L + N0), nξ decoupled
convection-diffusion operators (provided ∇a0 is nonzero)

Refinement: Action of P−1: approximated using multigrid
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Representative Analysis

Diffusion preconditioner P = I ⊗ L:

Consider (generalized) field of values

FOV(C ,P) =

{
(v,Cv)

(v,Pv)
: v ∈ Cnxnξ , v 6= 0

}
.

Theorem

For the diffusion preconditioner, FOV(C ,P) is contained in the circle

{z ∈ C : |z − 1| ≤ 2 cD cL} , cL = ‖∇a0‖∞+σνp+1

M∑
m=1

√
λm‖∇am‖∞,

where ‖∇am‖∞ = supx∈D |∇am(x)|,
νp+1 = largest root of orthonormal Rys polynomial of degree p + 1,

cD > 0 is a constant independent of h, σ and p.
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Experimental Results

Benchmark problems

un = 0

un = 0

u = 0u = 1

a = log k(x, ξ) constructed from

a0 = 1 + 10x2 (∇a0 6= 0)

Cov(x, y)= σ2 exp
(
−(‖x− y‖2/`)2

)
Problem 1: ` = 1, M = 5 term truncated KL exp

Problem 2: ` = .5, M = 10-term truncated KL exp

Both: capture 95% of total variance

Efficient Solution Algorithms for Partial Differential Equations with Random Coefficients



Solution Algorithms for Stochastic Galerkin/Collocation Discretization
Special Treatment of Lognormal Distribution

Adaptive Collocation with Kernel Density Estimation
Conclusions

Problem Statement: Lognormal Diffusion Coefficient
Transformation, Matrix Structure
Preconditioning strategies
Experimental Results

Iteration
Counts

Mean-based
P = I ⊗ (L + N0)

vs.
Diffusion
P = I ⊗ L

Problem 1
` = 1
M = 5

n σ p=1 2 3 4 p=1 2 3 4
32 0.1 6 6 6 6 23 25 25 25
64 - 6 6 6 6 23 24 24 24

128 - 5 5 5 5 21 22 22 22
32 1.0 8 9 9 10 26 29 31 32
64 - 7 8 9 9 25 28 30 30

128 - 7 8 8 9 23 26 28 29
32 2.0 10 12 14 15 28 33 36 38
64 - 9 11 13 14 27 31 34 36

128 - 9 11 12 13 25 29 32 34

Problem 2
` = .5
M = 10

n σ p=1 2 3 4 p=1 2 3 4
32 0.1 6 6 6 6 24 25 26 25
64 - 6 6 6 6 23 24 25 24

128 - 6 6 5 6 21 23 23 22
32 1.0 10 12 13 14 28 32 34 32
64 - 9 12 13 14 26 30 32 30

128 - 9 11 12 13 25 29 30 29
32 2.0 13 19 24 28 30 37 41 46
64 - 12 18 23 27 29 35 39 44

128 - 12 17 21 26 28 33 37 41
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Discussion

Again: establishes textbook MG convergence wrt spatial mesh

Overcomes difficulties associated with nonlinearity of lognormal
coefficients

One caveat: for series approximation to ∇a
Require a to be mean-square continuously differentiable
(λm, am): eigenpairs derived from covariance of a, Cov(x, y)

OK: c(x, y) = exp
(
−(‖x− y‖2/`)

2
)

Not: c(x, y) = exp (−‖x− y‖1/`)
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Restrictions for Ideas Above

Some restrictions of the approaches just discussed:

Generally do not have joint pdf for diffusion coefficient

Ignored in part I above
Worked around in part II (with some limitations)

Some issues for collocation

Simpler than Galerkin (non-intrusive), but not cheaper
Requires regularity in ξ

To address these (E & Miller):

For pdf: use kernel density estimation methods

For costs of collocation: use adaptive sparse grid collocation
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Adaptive Sparse Grid Collocation

Collocation based on interpolation

Consider function u(ξ) at left
piecewise linear interpolant uI (ξ)

ξ∗ = child, node at next level uniform grid
w(ξ∗) = interpolation error at ξ∗:

Ma & Zabaras: If ui (ξ) is represented using
hierarchical basis (left), then

w(ξ∗) = coefficient of basis function
in interpolant on refined grid

Strategy: Refine grid using child ξ∗
iff |w(ξ∗)|> tolerance
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Adaptive Sparse Grid Collocation

Collocation based on interpolation

Consider function u(ξ) at left
piecewise linear interpolant uI (ξ)

ξ∗ = child, node at next level uniform grid
w(ξ∗) = interpolation error at ξ∗:

Ma & Zabaras: If ui (ξ) is represented using
hierarchical basis (left), then

w(ξ∗) = coefficient of basis function
in interpolant on refined grid

Strategy: Refine grid using child ξ∗
iff |w(ξ∗)|> tolerance
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Algorithm: Adaptive interpolation with hierarchical basis functions

Set A0(u)(ξ) = 0
Set k = 1
Set ∆θ1

adaptive = θ1

repeat
∆θk+1

adaptive = ∅
for ξ∆k

j ∈ ∆θk
adaptive

wk
j = u(ξ∆k

j )−Ak−1(u)(ξ∆k
j ) Augment interpolant at

if ||wk
j || > τ then refined grid nodes only

∆θk+1
adaptive = ∆θk+1

adaptive ∪ child(ξ∆k
j ) where interpolation

endif error is too large
endfor
Set Ak(u)(ξ) =

∑k
i=1

∑
j w i

j ψ
i
j (ξ) Interpolant = sum(levels)

k = k + 1 all level-k basis functions
until max(||wk−1

j ||) < τ
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To Use this Idea with Diffusion Equation −∇ · (a(x, ξ)∇u) = f

01 12 2 2 2Levels

Start with ξ(0), compute solution u(x, ξ(0))

Determines interpolant [A(0)u](x, ξ)

Identify children {ξ(1)
j } of ξ(0)

Compute solutions {u(x, ξ
(1)
j )}, add {ξ(1)

j } to set of collocation
points according to adaptive strategy with tolerance test

‖wk
j ‖∞ρ(ξ∆k

j ) > τ

Determines interpolant [A(1)u](x, ξ)

Repeat: identify children of “level-1” points, compute solutions, etc.

Result: Collocation solution A(k)u

Approximate moments, distributions of u using A(k)u
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Kernel Density Estimation

Given N samples of ξ, estimate density function by

ρ̂(ξ) =
1

NhM

N∑
k=1

K

(
ξ − ξ(i)

h

)

For bandwidth h, use maximum likelihood cross-validation: maximize

CV (h) ≡ 1

N

N∑
i=1

log(ρ̂−i (ξ
(i)))

where

ρ̂−i (ξ) =
1

NhM

N∑
k=1,k 6=i

K

(
ξ − ξ(k)

h

)

For K (ξ), use Epanechnikov kernel

K (ξ) =

(
3

4

)M M∏
i=1

(1− ξ2
i )1{−1≤ξi≤1}
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Experimental Results

Test problem: − d
dx aM(x , ξ) d

dx u(x , ξ) = 1 ∀ x ∈ (0, 1)

u(0, ξ) = u(1, ξ) = 0

aM = µ+
∑M/2−1

k=0 λk(ξ2kcos(2πkx) + ξ2k+1sin(2πkx))

µ = 3, λk = exp(−k)

ξk uniformly distributed on [0, 1]

Experiment: Generate N samples of ξ
Use them to generate estimate ρ̂(ξ)
Use ρ̂ to generate adaptive collocation solution Au

Compare with:

Use the same N samples to perform Monte-Carlo simulation
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Restrictions for Ideas Above
Adaptive Sparse Grid Collocation
Kernel Density Estimation
Experimental Results

Representative Results: M = 10 parameters

N
τ

5× 10−2 1× 10−3 5× 10−4 1× 10−4 5× 10−5

100 7.66× 10−3 8.86× 10−4 4.41× 10−4 4.48× 10−5 8.28× 10−6

9.08× 10−2 (76) (1026) (1655) (5026) (8111)
500 7.13× 10−3 6.08× 10−4 3.36× 10−4 2.34× 10−5 1.01× 10−5

4.06× 10−2 (92) (1170) (1189) (5773) (9404)
1000 9.19× 10−3 6.03× 10−4 2.65× 10−4 1.95× 10−5 1.77× 10−5

2.87× 10−2 (59) (1216) (1989) (5996) (9664)
5000 7.16× 10−3 6.62× 10−4 3.03× 10−4 2.04× 10−5 1.02× 10−5

1.28× 10−2 (93) (1120) (2041) (6095) (9787)
20000 7.25× 10−3 6.27× 10−4 2.66× 10−4 1.96× 10−5 5.67× 10−6

6.42× 10−3 (93) (1187) (2127) (6050) (9942)

Monte-Carlo Collocation error
error ‖ 1

N

∑N
i=1 u(x , ξ(i))−A(u)(x , ξ(i))‖l2(D)

Parens: Number of DE solves needed for collocation
Green: This number is smaller than N and yields smaller error
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Concluding Remarks

Various Useful Approaches to Handle Diffusion Problem
with Stochastic Coefficient

Stochastic Galerkin equations with linear dependence on parameters
are solvable using multigrid

Diffusion equation with lognormal coefficent can be handled by
transformation to convection-diffusion form

Adaptive collocation with KDE is general and effective
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