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Overview

Main theme of the proposal:
The use of large deviations ideas to design accelerated schemes for Monte
Carlo and related topics (e.g., molecular dynamics)

Topic of today�s talk:
An application of the Donsker-Varadhan theory to parallel tempering

Initial goal and �nal outcome:
Intention was to use large deviation theory to choose parameters in parallel
tempering, but ended up constructing a new scheme we call in�nite
swapping
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Problem formulation

A representative example. Compute the average potential energy and
other functionals with respect to a Gibbs measure of the form

�(dx) = e�V (x)=�dx
.
Z (�);

and V is the potential of a (relatively) complex physical system.

A
corresponding process model is

dX = �rV (X )dt +
p
2�dW ; X (0) = x0;

where � is a �xed temperature. Monte Carlo approximation isZ
Rd
f (x)�T (dx) =

1
T

Z T

0
f (X (t))dt:

When parts of Rd communicate poorly under dynamics of X , the
approximation can be extremely slow to converge (the rare event problem).
Hence interest in accelerated Monte Carlo.

Simulations are done using a discrete time model.
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Problem formulation

At low temperatures the main contribution comes from the global
minimum and �important� local minima, which often do not communicate
well.

To extract useful information requires large scale computing, e.g., 1010

times steps for a more complex model than X itself.

Dimensions on the order of 10,000, but can be much larger.
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Problem formulation

An example of such is the Lennard-Jones cluster of 38 atoms. This
potential has � 1014 local minima.

The lowest 150 and their
�connectivity�graph are as in the �gure (taken from Doyle, Miller &
Wales, JCP, 1999).
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Problem formulation

Problems with the same �rare event� issue:

Bayesian statistics

Pattern theory (image analysis and related estimation)

Counting problems in computer science

Computational physics/chemistry (condensed matter, quantum
systems)

Computational biology (motif sampling)

...
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Large deviations for the empirical measure

Consider
dX = b(X )dt +

p
2�dW ; X (0) = x0

and for large T the empirical or occupation measure

�T (dx) =
1
T

Z T

0
�X (t)(dx)dt:

Then considered as taking values in P(Rd ),

P
n
�T � �

o
� e�TI (�):

Here I (�) > 0 if �(dx) 6= �(x)dx , and it takes a fairly explicit form. We
will use the LD rate I , where a larger rate implies faster convergence.
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The idea of parallel tempering

Setting of two temperatures.

Besides � 1 = � , introduce higher
temperature � 2 > � 1. Thus

dX1 = �rV (X1)dt +
p
2� 1dW1

dX2 = �rV (X2)dt +
p
2� 2dW2;

with W1 and W2 independent. Then one obtains a Monte Carlo
approximation to

�(x1; x2) = e�
V (x1)
�1 e�

V (x2)
�2

�
Z (� 1; � 2):
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The idea of parallel tempering

Now introduce swaps (Swendsen, Geyer), i.e., X1 and X2 exchange
locations with state dependent intensity

ag(x1; x2) = a
�
1 ^ �(x2; x1)

�(x1; x2)

�
= a

�
1 ^ e�

h
V (x1)
�1

+
V (x2)
�2

i
+
h
V (x2)
�1

+
V (x1)
�2

i�
;

with a > 0 the �swap rate.�
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The idea of parallel tempering

Now have a Markov jump-di¤usion. Easy to check: owing to detailed
balance still have

�(x1; x2) = e�
V (x1)
�1 e�

V (x2)
�2

�
Z (� 1; � 2):

Increased temperature � higher di¤usivity of X a2
� easier communication for X a2
� passed to X a1 via swaps

Natural question: how does convergence depend on a and � 2? We focus
on a (may consider � 2 in future).
Implementation uses discrete time version, and conventional wisdom is
that swap rate should be chosen so that

one swap attempt  ! six steps discrete dynamics
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Large deviation rate for parallel tempering

What does the Donsker-Varadhan theory say?

Suppose � given such that

�(x1; x2) =
d�
d�
(x1; x2)

is smooth. Then we have monotonic form

I a(�) = J0(�) + aJ1(�)

where J0 is the rate for �no swap�dynamics and

J1(�) =
Z
Rd�Rd

g(x1; x2)`

 s
�(x2; x1)
�(x1; x2)

!
�(dx1dx2)

with
` (z) = z log z � z + 1 = 0 i¤ z = 1:
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Large deviation properties and the in�nite swapping limit

Rate for low temperature marginal. By contraction principle, for
probability measure 


I a1 (
) = inf fI a(�) : �rst marginal of � is 
g :

If 
(dx1) 6= �1(dx1) = e�
V (x1)
�1 dx1

�
Z (� 1), then for a 2 (0;1)

I a1 (
) > I
0
1 (
)

and
I a1 (
) " some �nite limit.
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Large deviation properties and the in�nite swapping limit

This suggests one consider the in�nite swapping limit a!1, except

if a is large but �nite almost all computational e¤ort is directed at
swap attempts, rather than di¤usion dynamics,

if a!1 then limit process not well de�ned (no tightness).

An alternative perspective: rather than swap particles, swap
temperatures, and use �weighted�empirical measure.

Particle swapping. Process:

(X a1 ;X
a
2 ) ;

Approximation to �(dx):

1
T

Z T

0
�(X a1 ;X a2 )

(dx)dt

Paul Dupuis (Brown University) October, 2011



Large deviation properties and the in�nite swapping limit

This suggests one consider the in�nite swapping limit a!1, except

if a is large but �nite almost all computational e¤ort is directed at
swap attempts, rather than di¤usion dynamics,

if a!1 then limit process not well de�ned (no tightness).

An alternative perspective: rather than swap particles, swap
temperatures, and use �weighted�empirical measure.

Particle swapping. Process:

(X a1 ;X
a
2 ) ;

Approximation to �(dx):

1
T

Z T

0
�(X a1 ;X a2 )

(dx)dt

Paul Dupuis (Brown University) October, 2011



Large deviation properties and the in�nite swapping limit

This suggests one consider the in�nite swapping limit a!1, except

if a is large but �nite almost all computational e¤ort is directed at
swap attempts, rather than di¤usion dynamics,

if a!1 then limit process not well de�ned (no tightness).

An alternative perspective: rather than swap particles, swap
temperatures, and use �weighted�empirical measure.

Particle swapping. Process:

(X a1 ;X
a
2 ) ;

Approximation to �(dx):

1
T

Z T

0
�(X a1 ;X a2 )

(dx)dt

Paul Dupuis (Brown University) October, 2011



Large deviation properties and the in�nite swapping limit

This suggests one consider the in�nite swapping limit a!1, except

if a is large but �nite almost all computational e¤ort is directed at
swap attempts, rather than di¤usion dynamics,

if a!1 then limit process not well de�ned (no tightness).

An alternative perspective: rather than swap particles, swap
temperatures, and use �weighted�empirical measure.

Particle swapping. Process:

(X a1 ;X
a
2 ) ;

Approximation to �(dx):

1
T

Z T

0
�(X a1 ;X a2 )

(dx)dt

Paul Dupuis (Brown University) October, 2011



Large deviation properties and the in�nite swapping limit

This suggests one consider the in�nite swapping limit a!1, except

if a is large but �nite almost all computational e¤ort is directed at
swap attempts, rather than di¤usion dynamics,

if a!1 then limit process not well de�ned (no tightness).

An alternative perspective: rather than swap particles, swap
temperatures, and use �weighted�empirical measure.

Particle swapping. Process:

(X a1 ;X
a
2 ) ;

Approximation to �(dx):

1
T

Z T

0
�(X a1 ;X a2 )

(dx)dt

Paul Dupuis (Brown University) October, 2011



Large deviation properties and the in�nite swapping limit

This suggests one consider the in�nite swapping limit a!1, except

if a is large but �nite almost all computational e¤ort is directed at
swap attempts, rather than di¤usion dynamics,

if a!1 then limit process not well de�ned (no tightness).

An alternative perspective: rather than swap particles, swap
temperatures, and use �weighted�empirical measure.

Particle swapping. Process:

(X a1 ;X
a
2 ) ;

Approximation to �(dx):

1
T

Z T

0
�(X a1 ;X a2 )

(dx)dt

Paul Dupuis (Brown University) October, 2011



Large deviation properties and the in�nite swapping limit

Temperature swapping.

Process:

dY a1 = �rV (Y a1 )dt +
p
2r1(Z a)dW1

dY a2 = �rV (Y a2 )dt +
p
2r2(Z a)dW2;

where r(Z a(t)) jumps between � 1 and � 2 with intensity ag(Y a1 (t);Y
a
2 (t)).

Approximation to �(dx):

1
T

Z T

0

h
1f0g(Z

a)�(Y a1 ;Y a2 )(dx) + 1f1g(Z
a)�(Y a2 ;Y a1 )(dx)

i
dt:
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Large deviation properties and the in�nite swapping limit

The advantage is a weak limit well de�ned as a!1:

dY1 = �rV (Y1)dt +
p
2� 1�1(Y1;Y2) + 2� 2�2(Y1;Y2)dW1

dY2 = �rV (Y2)dt +
p
2� 2�1(Y1;Y2) + 2� 1�2(Y1;Y2)dW2;

�T (dx) =
Z T

0

�
�1(Y1;Y2)�(Y1;Y2) + �2(Y1;Y2)�(Y2;Y1)

�
ds;

and

�1(x1; x2) =
e
�
h
V (x1)
�1

+
V (x2)
�2

i
Z�(x1; x2)

; �2(x1; x2) =
e
�
h
V (x2)
�1

+
V (x1)
�2

i
Z�(x1; x2)

:

Theorem:
�
�T
	
satis�es the large deviation principle with rate I1.
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Implementation issues and partial in�nite swapping

Applications of parallel tempering use many temperatures (e.g.,
K = 30 to 50) when V is complicated to overcome barriers of all
di¤erent heights.

Swaps typically between near-neighbor only, with randomized or
deterministic schedule of which pair to try (discrete time).

Straightforward extension of in�nite swapping to K temperatures
� 1 < � 2 < � � � < �K .
But, coe¢ cients become complex, e.g., K ! weights, and each involves
many calculations. Not practical if K � 7.
Need for computational feasibility leads to partial in�nite swapping.
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Implementation issues and partial in�nite swapping

Partial in�nite swapping. Given any subgroup of set of permutations one
can construct a corresponding partial in�nite swapping dynamic.

Subgroup property means the corresponding dynamic can be realized as
weak limit of a parallel tempering algorithm.

Examples are Dynamics A and B in �gure:

Paul Dupuis (Brown University) October, 2011



Implementation issues and partial in�nite swapping

Partial in�nite swapping. Given any subgroup of set of permutations one
can construct a corresponding partial in�nite swapping dynamic.

Subgroup property means the corresponding dynamic can be realized as
weak limit of a parallel tempering algorithm.

Examples are Dynamics A and B in �gure:

Paul Dupuis (Brown University) October, 2011



Implementation issues and partial in�nite swapping

Partial in�nite swapping. Given any subgroup of set of permutations one
can construct a corresponding partial in�nite swapping dynamic.

Subgroup property means the corresponding dynamic can be realized as
weak limit of a parallel tempering algorithm.

Examples are Dynamics A and B in �gure:

Paul Dupuis (Brown University) October, 2011



Implementation issues and partial in�nite swapping

Using partial in�nite swapping one can control the complexity of the
coe¢ cients and algorithm.

If one alternates between subgroups that generate full group of
permutations, one approximates full in�nite swapping (convergence
theorem in continuous time).

However, particles lose their physical identity in in�nite swapping limit
(partial or otherwise). Cannot simply alternate�need a proper
�hando¤� rule.

Can identify the �distributionally correct�hando¤ rule, using that
partial swappings are limits of �physically meaningful�processes.
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Numerical example

Relaxation study of convergence to equilibrium for LJ-38.

quantity of interest: average potential energy at various temperatures

used 45 temperatures, alternate 3�6�6�� � ��6 and 6�6�� � ��6�3 type
dynamics for partial in�nite swapping

lowest 1/3 of temperatures raised to push process away from
equilibrium (low temperature components pushed away from deep
minima)

then reduced to correct temperatures for 600 discrete time steps to
study return to equilibria

repeated 2000 times, we plot averages for lowest (and hardest)
temperature

Paul Dupuis (Brown University) October, 2011



Numerical example

Convergence to equilibrium for LJ-38: parallel tempering versus partial
in�nite swapping, only lowest temperature illustrated.

For this system, reduction relative to best parallel tempering: 1010 reduced
to 106 steps with additional overhead of approximately 10%.
Paul Dupuis (Brown University) October, 2011
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Concluding remarks

Function minimization attributes:

The in�nite swapping process (Y1;Y2) has symmetric dynamics,
interesting qualitative properties w.r.t. function minimization.
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Concluding remarks

Convergence to equilibium, single sample, 12 lowest temperatures:
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Concluding remarks

Future work.

Application to problems where parallel tempering fails

Selection of �best�partial in�nite swapping approximations.

Use of other parameters besides temperature.

Better quantitative understanding of rate of marginals such as I11 (
)
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