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• Application to transport and remap 
– Optimization-based monotone remap (OBR) 
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–  OBR/OBT with reduced dissipation  
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Goal: Physically Correct Discrete Models 

Challenges:#

€ 

∂tu
h = Lhuh

Typically, constraints are not preserved 
automatically under discertization, even 

with stabilization/regularization!

€ 

C ≤ Cuh ≤ C

  

€ 

Buh = b


In multiphysics codes this solution is input 
for another physics component!

Automatic preservation of maximum 
principle, local and global bounds, is 

required for robust, predictive simulations!

Trying to deal with these challenges directly couples 
constraints with accuracy considerations:#

⇒  increase fragility due to ad hoc “fixes”#
⇒  reduced functionality due to grid restrictions#

€ 

∂tu = Lu

€ 

C ≤ Cu ≤ C

  

€ 

Bu = b




A “non-standard” strategy:  
Optimization-based modeling (OBM) 

As our models become more sophisticated, continuing reliance on direct 
approaches will lead to increased complexity of resulting algorithms, 
accompanied by decrease in robustness,  efficiency and flexibility. 

Motivation:  

Use optimization and control ideas to manage externally those 
objectives that are difficult (or impractical) to handle directly in the 
discretization process via grid and/or space manipulation. 

Our approach: 

➪  Elimination of limiters: lifts the associated restrictions on cell types & accuracy  
➪  Balancing of constraints: accuracy, mass conservation, monotonicity, variable bounds… 
➪  Generality with respect to problem discretization: applicable to FE, FV and FD 
➪  Generality with respect to problem type:  elliptic, hyperbolic, … 
➪   Enable efficient reuse of existing codes: solvers, optimization tools,…  

Potential payoffs 



Key question: how to reformulate (map) a given problem into an optimization problem? 

(1)   identify states;  
(2)   identify objective;  
(3)   identify constraints: 

Generic optimization “harness” 

  

€ 

minimize    J(u) +
ε
2
θ 2

subject to   
Lu = θ

C ≤ Cu ≤ C

⎧ 
⎨ 
⎩ 

objective 

  

€ 

→ θ (control)regularization 

equality 

inequality 

  

€ 

→ u (state)

  

€ 

→ constraints

OBM in a nutshell 

  “Flux-corrected remap”, M. Shashkov et al, 2010 - using local optimization strategy; FCT inspired 
  “Enforcing discrete maximum principle”, M. Shashkov et al, 2007 - using constrained optimization 
  “Enforcement of constraints & max. principle in VMS”, T. Hughes, 2009 - applies Shashkov’s idea to VMS 

3 basic steps     



Specialization to preservation of properties 

  

€ 

∂tu = Lu

C ≤ Cu ≤ C


  

€ 

minimize    1
2
uh − uT

h 2

subject to   
C ≤ Cuh ≤ C

∂tuT
h = LhuT

h

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

  Match target field 

  Enforce constraints 

  Define target field 

  “Optimization based remap”, Bochev, Ridzal, Scovazzi, Shashkov JCP, 2011 
  “Optimization-based transport”, Parts 1-3, Bochev, Peterson, Ridzal, Young, LNCS 2012 

Objective Constraints 
Match a discrete target solution having the 
best possible accuracy 

Enforce lost physical 
properties 

Focus on remap and transport algorithms 



OBM Framework  for Remap and Transport 

Remap Nomenclature 

€ 

κ i

˜ κ i

E( ˜ κ i)

➙ Lagrangian (old) cell 

➙ Rezoned (new) cell 

➙ Neighbors of old cell 

€ 

V (κ i) = dV
κ i

∫

mi = ρ(x)dV
κ i

∫

➙ (old) cell volume  

➙ (old) cell mass 

Local bounds 

€ 

ρi =
mi

V (κ i)

€ 

ρi
min ≤ ρi ≤ ρi

max

€ 

ρi
minV (κ i) ≤ mi ≤ ρi

maxV (κ i)



ρ 

Optimization-based monotone transport (OBT) 

ρ 
“new” 

ρ 
“old” 

Optimization-based Remap (OBR) ⇒ OBT algorithm 

Transport = incremental remap (Dukowicz and Baumgardner, JCP 2000) 

t t+Δt t+Δt 

Remap 

€ 

mi(t) = ρ(x)dV
κ i (t )
∫

€ 

mi(t +Δt) = mi(t)
€ 

κ i (t )

€ 

κ i (t + Δt )

€ 

d
dt
mi(t) =

d
dt

ρ(x)dV
κ i (t )
∫ = 0Mass is conserved in Lagrangian volumes:  



Statement of the remap problem 

€ 

˜ m i ≈ mi
EX = ρ(x)dV

˜ κ i

∫ ; i =1,...,iN

Given:         Mean density values     on the old grid cells  
Find:           Accurate approximations      for the masses of the new cells     : 

Subject to: 
€ 

˜ κ i

€ 

κ i

€ 

ρi

€ 

˜ m i

€ 

˜ m i
i
∑ = mi

i
∑ = M

Total mass conservation 

C1:  

€ 

ρ(x) = c0 + cTx ⇒ ˜ m i = mi
EX = ρ(x)dV

˜ κ i

∫ ; i =1,...,iNC2: 

Linearity preservation 

C3: 

€ 

ρi
minV ( ˜ κ i) ≤ ˜ m i ≤ ρi

maxV ( ˜ κ i)

€ 

ρi
min ≤ ˜ ρ i ≤ ρi

max

Bounds preservation 

This begins to 
look like an 
optimization 

problem   



Optimization-based remap (OBR): setup 

€ 

˜ m i
EX = mi

EX + Fij
EX

E( ˜ κ i )
∑ ; Fij

EX = ρ(x)dV
˜ κ i ∩κ j

∫ − ρ(x)dV
κ i ∩ ˜ κ j

∫

The exact mass on new cell     can be expressed in mass-flux form: 

€ 

˜ κ i

€ 

Fij
h = −Fij

h ⇒ ˜ m i
h

Cell
∑ = M

C1: Mass conservation. Guaranteed if discrete fluxes are antisymmetric:  

  

€ 

˜ m i
h = mi

h + Fij
h

E( ˜ κ i )
∑ ,   where     Fij

h = ρi
h (x)dV

˜ κ i ∩κ j

∫ − ρi
h (x)dV

κ i ∩ ˜ κ j

∫ ≈ Fij
EX

Therefore, the mass on the new cell      can be approximated by  

€ 

˜ κ i

€ 

κ iC2: Linearity preservation.  Guaranteed if       is exact for linear functions on all     : 

€ 

ρi
h

€ 

Fij
T = ρi

h (x)dV
˜ κ i ∩κ j

∫ − ρi
h (x)dV

κ i ∩ ˜ κ j

∫ Target (high-order) mass fluxes 

€ 

˜ κ i ∩κ j

€ 

˜ κ i



Optimization-based remap (OBR): formulation 

    

€ 

minimize
Fij

h
     

Cell
∑ Fij

h − Fij
T( )

2

Flux
∑    subject to

˜ m i
min ≤ mi + Fij

h

i< j
∑ − Fji

h

i> j
∑ ≤ ˜ m i

max i =1,…,N

Constrained optimization formulation of remap 

➪   Objective = minimize distance between discrete and target fluxes#
➪   Constraint = C3: Local bounds preservation!
➪   Accuracy (high-order target) is completely separated from bounds enforcement#

⇒  Allows extension of OBR to arbitrary cells, e.g., polygons and polyhedra#
⇒  Local bounds and linearity preservation impervious to cell shapes!#
⇒  Allows extension of OBR to higher than 2nd order using appropriate reconstruction#

➪   OBR can be extended to systems/coupled transport#
➪   Motivated in part by the  Flux-corrected remap (FCR) (Liska, Shashkov, et al JCP 2010) 

€ 

ρi
h



OBR is provably accurate 

1)  Less restrictive than similar condition for Van Leer (B. Swartz, JCP 1999) 
2)  Result independent of cell shape (arbitrary polyhedral grids are OK). 

Let     denote the set of barycenters (centroids)      of the old cells in the neighborhood 
of a new cell      : 

A sufficient condition for the target fluxes       to be in the feasible set, i.e. for the 
optimization based remap to preserve linear functions, is  

where     is the barycenter of     and      is the convex hull of      . 

€ 

˜ κ i

€ 

Bi = b j κ j ∈ E( ˜ κ j ){ }

    

€ 

˜ b i ∈
 
B i for all   i =1,…,N

€ 

Bi

€ 

b j

€ 

Fij
T

€ 

˜ b i

€ 

˜ κ i   

€ 

 
B i

€ 

Bi

Theorem. (Preservation of linearity)  

  

€ 

 
B i



OBR in two-dimensions 

€ 

Fij
h = ρi

h (x)dV
˜ κ i ∩κ j

∫ − ρi
h (x)dV

κ i ∩ ˜ κ j
∫

€ 

˜ m i
h = mi

h + Fij
h

E( ˜ κ i )
∑

Exact cell intersections 
Dukowicz, 1984 

Swept region (SR) approximation 
Margolin, Shashkov, 2003 

€ 

˜ κ i ∩κ j

€ 

˜ κ i

€ 

Fij
h = ρi

h (x)dV
Σ f

∫

€ 

Σ f

SRs are completely determined by the coordinates of old and new cells ⇒ efficiency 
SRs give exact cell masses for linear density ⇒ accuracy 

Exact cell intersections guarantee that low order fluxes in FCR are monotone. 
However, this is not true for SR without additional restrictions on mesh motion. 

Potential issue for FCR but not for OBR, which does not use low order fluxes 

€ 

˜ κ i



Comparison of swept region implementations 

C=5 C=6 C=7 C=14 C=15 C=16 C=100 
OBR ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
FCR ✔ ✔ ✔ ✗ ✗ ✗ ✗ 
Donor ✔ ✗ ✗ ✗ ✗ ✗ ✗ 

Preservation of monotonicity 

C=3 C=4 C=5 C=15 C=16 C=100 
OBR ✔ ✔ ✔ ✔ ✔ ✔ 
FCR ✔ ✗ ✗ ✗ ✗ ✗ 

Preservation of linearity 

Donor FCR OBR 

Mesh motion 



Efficiency: OBR vs. FCR in 2D 

Cells Remaps FCR (sec) OBR (sec) Ratio 
64x64 320 4.2 7.3 1.7 
128x128 640 25.4 49.5 1.9 
256x256 1280 176.5 390.6 2.2 
512x512 2560 1812.5 3663.8 2.0 

Matlab wall-clock times on a single Intel Xeon X5680 3.33 GHz processor 

“Sine” density 

Cells Remaps FCR (sec) OBR (sec) Ratio 
64x64 320 4.9 8.4 1.7 
128x128 640 28.5 57.8 2.0 
256x256 1280 183.8 418.6 2.3 
512x512 2560 1832.9 4528.6 2.5 

“Peak” density 



OBT applied to a standard 2D test case 

VLT 

Initial 

OBT 

Van Leer 

Rotating flow example (LeVeque, SINUM 33, 1996) 

€ 

u = −(y −0.5) v = (x −0.5)

Grid size:      NxN,      N=100 
Time steps:  2πN    628 

CFL < 1 



L1 Error CFL=1 CFL=1.60 CFL=1.62 CFL=2.20 CFL=2.25 CFL=5.21 CFL=5.50 

OBT 2.14E-02 2.37E-02 2.38E-02 2.60E-02 2.62E-02 4.02E-02 4.36E-02 

FCRT 1.97E-02 2.19E-02 2.21E-02 3.00E-02 6.00E+06 9.45E+38 1.83E+40 

VLT 2.14E-02 2.36E-02 8.15E-01 3.47E+54 2.85E+56 2.83E+79 6.23E+77 

OBT inherits the robustness of OBR 
Zalesak cylinder: rotation 

OBR: CFL=1.0 

OBR: CFL=4.7 
Initial density 



OBT inherits the accuracy of OBR 

Grid 1/Δt L∞ OBT L∞ FCRT L∞ VLT CR-OBR CR-FCRT CR-VLT 

1002 5026 3.76E-02 3.66E-02 5.08E-02 1.88 1.76 1.66 

1202 6031 2.60E-02 2.57E-02 3.78E-02 1.94 1.84 1.64 

1402 7037 1.98E-02 1.98E-02 2.97E-02 1.91 1.82 1.62 

Cumulative convergence rate (CR): smooth cone 

Preliminary cost studies with a Matlab™ prototype show 

•  Linear O(N) cost for OBR and OBT (same as local approaches) 

•  OBR/OBT more expensive by a factor of ~ 2.1 than local methods 



OBR/OBT With Reduced Dissipation 
Key observations 

  OBR/OBT feasible set always contains the “exact solution” 
  Linear reconstruction yields one possible set of target fluxes 
  In OBR/OBT reconstruction and bounds enforcement are completely separated 

⇒  reconstruction can be adjusted to problem features without concern for the 
bounds, the latter will be imposed by the inequality constraints   

Our approach 
Modify the linear reconstruction process using residual information. 
The corresponding fluxes capture better salient solution features. 

OBR feasible set 

Alternative target flux Linear target flux 

“exact” solution 

OBR solution 
OBR solution 

unfeasible 

Satisfy local 
bounds 



OBT with reduced dissipation 

Initial OBT OBT-RD 

Rotating cylinder 

€ 

u = −(y −0.5) v = (x −0.5)

Grid size:      NxN,      N=45 
Time steps:  2πN    282 



OBT with reduced dissipation: fine grid 

Initial 

OBT 

OBT-RD 

Rotating flow example (LeVeque, SINUM 33, 1996) 

€ 

u = −(y −0.5) v = (x −0.5)

Grid size:      NxN,      N=100 
Time steps:  2πN    628 CFL < 1 



OBT with reduced dissipation: coarse grid 
Initial 

OBT 

OBT-RD 

Rotating flow example (LeVeque, SINUM 33, 1996) 

€ 

u = −(y −0.5) v = (x −0.5)

Grid size:      NxN,      N=45 
Time steps:  2πN    282 CFL < 1 



OBT OBT-RD 



Summary: OBM is a non-standard strategy for improved 
predictiveness with significant potential payoffs 

We apply optimization and control tools to automatically manage discretization 
tasks that are difficult to accomplish directly: 

—  Reconcile solutions from constituent components of multi-physics problems 
—  Reconcile different representations of the same field in physically consistent manner 
—  Impose physical constraints that were lost during discretization 

Advantages 
—  Expand scope of methods to, e.g., unstructured grids and arbitrary cells  
—  Remove order limitations (reformulation yields equivalent problems) 
—  Rigorous mathematical foundations inherited from rich optimization theory 
—  Reuse of software components 

 Target Applications 

—  Climate models involve large number of transport equations on different grids:  
    OBM can provide a unified approach to handle these equations 
—  Compatible data transfer (remap) of scalar, vector and tensor fields for  

o  code to code coupling (Euler + Lagrange); overset methods  
o  conservative, bounds preserving remap for ALE methods 

—  Constrained transport of vector fields, e.g., magnetic advection 


