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Multi-scale models of fluid flow

Most computations of fluid flows use a continuum representation
(density, pressure, etc.) for the fluid.

Dynamics described by set of PDEs.

Well-established numerical methods (finite difference, finite
elements, etc.) for solving these PDEs.

Hydrodynamic PDEs are accurate over a broad range of length
and time scales.

But at some scales the continuum representation breaks down and
more physics is needed

When is the continuum description of a fluid not accurate?

Discreteness of molecules makes fluctuations important

Micro-scale flows, surface interactions, complex fluids
Particles / macromolecules in a flow
Biological / chemical processes
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Giant fluctuations

Box width is 1 mm

Experimental images of
light scattering from the
interface between two
miscible fluids

Images show formation
of giant fluctuations in dif-
fusive mixing

Vailati and Giglio, Nature
390,262 (1997)
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Additional experiments

Box width is 5 mm

Experiments show significant concentration fluctuations in zero gravity

Fluctuations are reduced by gravity with a cut-off wavelength proportional to g

Vailati, et al., Nature Comm., 2:290 (2011)
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Hydrodynamic Fluctuations

Particle schemes (DSMC, MD, ... ) capture statistical structure
of fluctuations in macroscopic variables at hydrodynamics
scales:

Variance of fluctuations
Time-correlations
Non-equilibrium fluctuations

Can we capture fluctuations at the continuum level and model
giant fluctuations
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Landau-Lifshitz fluctuating Navier Stokes

Landau and Lifshitz proposed model for fluctuations at the
continuum level

Incorporate stochastic fluxes into compressible Navier
Stokes equations
Magnitudes set by fluctuation dissipation balance

∂U/∂t +∇ · F = ∇ · D +∇ · S where U =

 ρ
J
E



F =

 ρv
ρvv + PI
(E + P)v

 D =

 0
τ

κ∇T + τ · v

 S =

 0
S

Q+ v · S

 ,

〈Sij (r, t)Sk`(r′, t ′)〉 = 2kBηT
(
δK

ik δ
K
j` + δK

i`δ
K
jk − 2

3δ
K
ij δ

K
k`

)
δ(r− r′)δ(t − t ′),

〈Qi (r, t)Qj (r′, t ′)〉 = 2kBκT 2δK
ij δ(r− r′)δ(t − t ′),

Note that there are mathematical difficulties with this system
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Numerical methods for stochastic PDE’s

Capturing fluctuations requires accurate methods for PDE’s
with a stochastic flux.

∂tU = LU + KW

where W is spatio-temporal white noise

We can characterize the solution of these types of equations in
terms of the invariant distribution, given by the covariance

S(k , t) =< Û(k , t ′)Û∗(k , t ′ + t) >=

∫ ∞
−∞

eiωtS(k , ω)dω

where
S(k , ω) =< Û(k , ω)Û∗(k , ω) >

is the dynamic structure factor
We can also define the static structure factor

S(k) =

∫ ∞
−∞

S(k , ω)dω
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Fluctuation dissipation relation

For
∂tU = LU + KW

if
L + L∗ = −KK ∗

then the equation satisfies a fluctuation dissipation relation and

S(k) = I

The linearized LLNS equations are of the form

∂tU = −∇ · (AU − C∇U − BW )

When BB∗ = 2C, then the fluctuation dissipation relation is
satisfied and the equilibrium distribution is spatially white with
S(k) = 1
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Discretization design issues

Consider discretizations of

∂tU = −∇ · (AU − C∇U − BW )

of the form
∂tU = −D(AU − CGU − BW )

Scheme design criteria
1 Discretization of advective component DA is skew adjoint;

i.e., (DA)∗ = −DA
2 Discrete divergence and gradient are skew adjoint:

D = −G∗

3 Discretization without noise should be relatively standard
4 Should have “well-behaved” discrete static structure factor

S(k) ≈ 1 for small k ; i.e. S(k) = 1 + αkp + h.o.t
S(k) not too large for all k . (Should S(k) ≤ 1 for all k?)
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Example: Stochastic heat equation

ut = µuxx +
√

2µWx

Explicit Euler discretizaton

un+1
j = un

j +
µ∆t
∆x2

(
un

j−1 − 2un
j + un

j+1

)
+
√

2µ
∆t1/2

∆x3/2

(
W n

j+ 1
2
−W n

j− 1
2

)
Predictor / corrector scheme

ũn
j = un

j +
µ∆t
∆x2

(
un

j−1 − 2un
j + un

j+1

)
+
√

2µ
∆t1/2

∆x3/2

(
W n

j+ 1
2
−W n

j− 1
2

)

un+1
j =

1
2

[
un

j + ũn
j +

µ∆t
∆x2

(
ũn

j−1 − 2ũn
j + ũn

j+1

)
+

√
2µ

∆t1/2

∆x3/2

(
W n

j+ 1
2
−W n

j− 1
2

)]
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Structure factor for stochastic heat equation
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Euler

S(k) = 1 + βk2/2

Predictor/Corrector

S(k) = 1− β2k4/4

PC2RNG:

S(k) = 1 + β3k6/8

How stochastic fluxes are treated can effect accuracy
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Elements of discretization of LLNS – 1D

Spatial discretization – fully cell-centered
Stochastic fluxes generated at faces
Standard finite difference approximations for diffusion

Fluctuation dissipation

Higher-order reconstruction based on PPM

UJ+1/2
=

7
12

(Uj + Uj+1)− 1
12

(Uj−1 + Uj+2)

Evaluate hyperbolic flux using Uj+1/2
Adequate representation of fluctuations in density flux

Temporal discretization
Low storage TVD 3rd order Runge Kutta
Care with evaluation of stochastic fluxes can improve
accuracy
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Multidimensional considerations

Basic cell-centered scheme has been generalized to
3D and two component mixtures

Additional complication is correlation between
elements of stochastic stress tensor

Several standard discretization approaches
do not correctly respect these correlations

Do not satisfy discrete fluctuation
dissipation relation
Leads to spurious correlations

Alternative approach based on randomly
selecting faces on which to impose correlation

Alternative approach based on staggered grid
approximation

Easier to construct scheme with desired
discrete fluctuation dissipation relation
Harder to construct a hybrid
discretization
See Balboa et al., submitted for
publication

Donev et al., CAMCoS, 5:149-
157 (2010).
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Fluctuations and mixing

Snapshots of the concentration during diffusive mixing
(t = 1,4,10)

Two species are identical
Interface is initially perfectly flat
Closed box (periodic in x) with no external forcing
This is not a hydrodynamic instability
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Effect of gravity

Heavy (red) and light (blue) particles
with density ratio 4

Non-equilibrium: Establish a
concentration gradient by imposing
concentration boundary conditions at
top and bottom

Long-time simulations show
formation of giant fluctuations with
no gravity

Adding gravity suppresses the
fluctuations

Qualitatively in agreement with
experimental observations

Donev et al., J. Stat. Mech. 2011:P06014 (2011)
Donev et al., PRL, 106(20):204501(2011)

g = 0

g = 0.1g0

g = g0
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Diffusion and fluctuations

Monotonic gas of “red” and “blue” particles in mean gradient at
statistical steady state

Nonequilibrium leads to velocity - concentration correlation
Correlation changes effective transport equation
Linearize, incompressible, isothermal theory

Ŝc,vy = 〈(δ̂c)(v̂∗y )〉 ≈ −[k2
⊥k−4]∇c0

Then

〈j〉 ≈ (D0 + ∆D)∇c0 = [ D0 − (2π)−3
∫

k
Ŝc,vy dk ]∇c0
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Fluctuating hydrodynamics results

Integrals are singular and require a
molecular level cutoff

Two dimensions

Lz << Lx << Ly

Effective diffusion ∼ ln(Lx )

Three dimensions

Lz = Lx = L << Ly

Effective diffusion ∼ 1/L

DSMC confirms FNS results in
both cases

System size dependence of en-
hanced diffusion is related to the
range of power law behavior in the
VACF of fluid particles in finite sys-
tems and observed finite size ef-
fects in MD simulations

Fluctuating Hydro. Solver Resultsg y
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Summary
Correlation of fluctuations that leads to enhanced diffusion can also lead to
macroscale observables in diffusive mixing (giant fluctuations)

Effect is relatively small in gases
Signficantly enhanced for liquids or additional physics such as reactions
Fluctuations can play a key role in the design of microfluidic devices

Numerical methodology for fluctuating Navier Stokes equations
Higer-order centered discretization of advection (skew adjoint)
Second-order centered approximation of diffusion (self adjoint)
RK3 centered scheme
Resulting discretization satisfies discrete fluctuation dissipation result
Discretization designed to have well-behaved discrete static structure
factors
FNS solver is able to capture enhancement of diffusion resulting from
fluctuations

Future directions
Fluctuations in low Mach number flows
Fluctuations in reacting systems
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Hybrid approach

Develop a hybrid algorithm for fluid mechanics that couples a
particle description to a continuum description

Molecular model only where needed – DSMC
Cheaper continuum model in the bulk of the domain –
LLNS

AMR provides a framework for such a coupling
AMR for fluids except change to a particle description at the
finest level of the heirarchy

Use basic AMR design paradigm for development of a
hybrid method
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Piston problem

T1, ρ1 T2, ρ2

Piston

ρ1T1 = ρ2T2

Wall and piston are adiabatic boundaries
Dynamics driven by fluctuations
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Piston dynamics

Hybrid simulation of Piston
Small DSMC region near the piston
Either deterministic or fluctuating continuum solver
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Piston position vs. time

Piston versus time
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