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Data assimilation 1s a unidirectional communications
system: data = transmitter > model = receiver. Synchronize
the model and the data to achieve communication of
Information from data to model.

We present an exact formula for the probability of the
performance of the communications channel. The exact
formula is an integral along a path in the space of states and
parameters of the receiver = model.

We analyze approximations to the path integral: variational
and direct evaluations.

We present an example from a core climate model element:
shallow water equations.



Common features in developing predictive models
of observed nonlinear systems:

| Few of the many state variables are
observable.

I We must estimate the unobserved state
variables and the fixed parameters to make
predictions, using X(t,,,) = f(x(t,).p).

Il Using observations to guide the
dynamics to the right sector of phase
space can allow prediction in chaos



L<D
Y (n) = hl (X(n))



Our general interest is in making models of observed
physical systems:

These models often have unknown parameters---conductivity,
transport coefficients, reaction rates, coupling strengths, ....

These models often have unobservable state variables---gating
variables for ion channels, population inversion in lasers, ...

d);(tt) F(x(t), p): need all x(0) and p
X(t )= T(x(t,), p); need all x(t,) and p

Our discussion starts with the model and the data,
and an interest in determining the unknown parameters
and unobserved state variables.



Data Assimilation—transfer of information
from observations to models:

Noisy Data, Errors in the Model—Ilow
resolution, ...., unknown initial states when
data acquisition begins

Exact Formulation as a Path Integral



P(x(m)|Y (m)) probability distribution for the
model state at time t_, given measurements

1¥(0), y(@),..., y(m)} =Y (m)



PathIntegral for P(x(m)|Y (m)):
P(x(m)[Y (m)) =

:ﬁd Dy(n) e™IXYMDP(x(n+1) | x(n))P(x(0))
— ﬁd Dy(n) XY (m) X ={x(m),x(m-1),...,x(0)}

TMI(Y, Z(m)) =2CM| (y(n),z(n)|Z(n-1)) \

Total Conditional Mutual Information
between path X and observations Y (m)

Path

What is different about this path integral: nonlinear “propagators”
dissipative dynamics, orbits on strange attractors.



Action for State and Parameter Estimation

A(X \Y(m))=—§o Jog{MI (x(n), y(n) Y (n—1)}
-glog{P<x<n+1>\x(n»}—log{P(x(o»}



With the density of paths exp[-A,(X |Y (m))],
we are able to evaluate any conditional expectation
value of a function

F(X)=F(X(m),x(m-1),...,x(1), x(0), p) as

- Ay (XT]Y (m))
E[F(X)|Y] = <F(X)> = J e F(X)

jdXe'A“(X'Y(m”

Path Is through state variable+parameter space
X={x(m),x(m-1),...x(0),p}



Idxe-%(XIY(m))F(X)
jdXe'%‘x'Y(m”
We have explored Monte Carlo numerical evaluation of the

Integral representation of the data assimulation task. We
produced the results here using single CPU machines.

E[F(X)|Y] = <F(X)> =

This is eminently parallelizable. Same problem on GPU
machines runs 60-300 times faster! Bigger problems utilize
more GPU threads.

This 1s the source of numerical optimism.



Parallel Speedup Factor
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Idxe-%(XIY(m))F(X)

E[F(X)|Y] = <F(X)> = jdXe-Ao(xw(m))

Another approach is expansion about a saddle path

&?;)EX) k.s=0 a=12.,(m+1)D+K

This is 4DVar.
This i1s a numerical optimization problem--see Gill tomorrow.
Significant problems with this when trajectories are chaotic.
Path integral representation allows corrections to 4DVar:

do Gaussian integral about X = S.

0" A(X) |

OX

This requires s



LLorenz96 Model
Dynamical variables--longitudinal “activity'--no vertical levels

no latitude variations.
y,(t) a=12,..,D

Y, (t) = Ypa (t) Yo (t) = Yp (t) Ypa (t) =Y (t)

dy, (t)
dt

= Yo (O (Vo () — Yo, (1)) — v, (1) + Forcing

We explored D = 5. Chaotic at Forcing = 7.9; we used
Forcing = 8.17



dy, (t)
dt
dy, (t)
dt
dy, (t)
dt
dy,(t)
dt
dy, (t)
dt

— y5 (t)(yz (t) —Y, (t)) —Y (t) +F+ U, (t)(xl (t) — Y (t))

=Y (t)(ys (t) —Ys (t)) - Y, (t) +F

=Y, (t)(y4 (t) Y (t)) o y3 (t) +F+ U, (t)(X3 (t) —Y; (t))

=Y (t)(ys (t) — Y, (t)) —Y, (t) +F

=Y, (t)(y1 (t) —Y; (t)) —Ys (t) +F

Model does not synchronize with ‘data’ (x(t)) with only one
coupling: two positive Conditional Lyapunov Exponents = two
different couplings for data are required



Calculate the synchronization error or cost function

Clky,k,)

ZZ(X (t) =¥ (t,)°

n=0

as a function of the couplings (u, (t)=k,,u,(t) =k,).

Examine the dependence on an initial condition, here y, (0)
for various regions of (k;,k,).



C(k,,k,)

Synchronization Error Lorenz96




C(k,,k,)

Synchronization Error Lorenz96
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C(y,(0), k,=0, k,=0)

62

Lorenz96 K =5
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0.0, k.= 8.0)

C(y,(0), k,
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Lorenz96 K =5
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8.0, k = 0.0)

C(y,(0), k,

Lorenz96 K =5

11.5

11.0 —
10.5
10.0
05 -
9.0 —
85 -

8.0

7.5




8.0, k= 8.0)

C(y,(0), k,
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Dynamical State and Parameter Estimation (DSPE)

C(y.u, p)—— j{(x (t) - y,(1)* +u(t)’}

Subject to the equality constraints:
dy, (t
5 (30,00, )+ U4 0 - 1, 0)

dyj (t)
dt

= FR(yl(t)1 Yr (t), p)



Use variational answer, saddle path, from
optimization

Saddle path

aAo(X)| 0
oxX 7

a=12..,(M+1)D+K

As a first approximation and use path
iIntegral to evaluate fluctuations about this
optimal path. We use IPOPT to solve
optimization problem via direct method.



Shallow Water Equations

H(x,y,t)=H,+h(x,y,1)
N —

P(-":J’a:.ef) = pog(H(—Y:J’:f)_ Z)
z, W(X,y,z,t)
L,-'(x? }’,f) - '{l!(i\',}’,f),\-’(x,}",f)}
Y, V(X,y,t)
X, U(x,y,t) oU (x,y,t)

- +U(x,y,t)VU(x,y,1)=-gVH(x,y,1)+
ot

~RU (x,y.0) + W2U (x,y,0) + f(3)2xU (x,9,1)

OH (x,7,1) | ¢,
ot

[L_T(x, J":T)H(x> '_1-",1‘)] =W

Eckman



Twin Experiment: Generate ‘data’ from NbyN
shallow water equation. Present L<N’
observed variables: u, v, h. How big must L be to
allow estimation of other unobserved state
variables? How many measurements must one
make to accurately estimate unobserved states?

For 8 by 8 example with 192 state variables, the
number Is 112 out of 192, about 60%.



In 8 by 8 shallow water equations, present

all measurements of h(x,y,t) as well as 2, 3,
4. .. Columns of data from wind velocities.
Columns contain data on shears in the wind

fields.



ue,s(t) (m/s) Unobserved

8by8 SWE Ekman Pumping h, 2 columns u,v Observed
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ue,a(t) (m/s) Unobserved

8by8 SWE Ekman Pumping h, 3 columns u,v Observed
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ue,s(t) (m/s) Unobserved

8by8 SWE Ekman Pumping h, 3 columns u,v Observed
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us,s(t) (m/s) Unobserved

8by8 SWE Ekman Pumping h, 4 columns u,v Observed
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’

u.(t) (m/s) Unobserved

8by8 SWE Ekman Pumping h, 4 columns u,v Observed
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Effective Actions for Path Integrals

< F(X)>= [dXF(X)e ™)
stationary path approximation

F(X)=F(S)+(X —S)-aFa;X)

s +£(X —-S) 0°F(X) (X =S5)+...

2 OX OX

ADVar Is oF(X) =0,
OX Performing an

1 0°F(X) integral involves

problem

(27)°
det(F "(S)

<F(X) >~ F(S)\/



Effective Actions for Path Integrals
Generalize 4Dvar to another, exact
variational principle

Generating function for moments along the path

aC(K) ZJ-dX o~ P (X)+K-X

OC(K) ICX X, g A )
ok, om EE T e

sc(K)  [9X XX, e—W)—{jdx X e—W)}{jdx X, e—W)}
X 0K, [dx et

and similarly for higher moments



Now trade in the “current’ K  for the mean field ¢ via

Alp) _ —C(K)+Keg

H H

oCK) _ @, Implies Alp) _ K,
oK, op,

_Alp) A (X)+K+(X-p)

e7=jdXe #

A (X)X )

=jdXe #

-1
0°Alp) | 0°C(K)
0p, 00, | OX 0X,



A(@) contains all the moment information. It is like
the Free Energy in statistical physics.

A X) =0 gives the "bare' orbit.
oX

aaA—(Q)) =0 gives the complete expected state variable <X>
Per

Including all corrections due to fluctuations in measurements
and model error.



oA()
Al) Ao (X)+ ” (X-9p)

eT:jdXe #

N@=ZMA@)

B -1 . ror-1 U r 2 1-120A (¢) U
. éﬂ A (o) _\/ (27;1"1)[) J‘due_uze th “ (m) 2.;“ NN
det(A,(¢))

A(p) = Ab(qo)—gtr(log A(9)) +O(12)

OA(p)

= 0 1s the generalized 4Dvar
0p



Using the integral representation of the Data
Assimilation questions, one can ask how many degrees
of freedom are actually required to capture the physics---
when do we stop improving the resolution ?

By a consideration of the continuum limit in space
and time, one can integrate out the high frequency and
high wavenumber components and provide a “universal”
parametrization of the answer, then evaluate the
remaining structure now containing all the Physics on
the desired scales.



Summary

Data assimilation is a unidirectional communications
system: data = transmitter, model = receiver. Synchronize the
model and the data to achieve communication of information
from data to model.

We gave an exact integral representation of the solution
of the master equation for the conditional probability
distribution in state space. It is an integral along a path in the
space of states and parameters of the receiver = model.

Evaluation of high dimensional path integral using Monte
Carlo methods. Works well in “low” dimensions. Eminently
parallelizable, so numerical possibilities for LARGE models
are available.









