
Fixed-Point Iteration

Fixed-point problem: Given g : IRn → IRn, find x∗ ∈ IRn such that x∗ = g(x∗).

Fixed-Point Iteration

Given x0.

For k = 0, 1, . . .

Set xk+1 = g(xk ).

Fixed-point iterations occur widely in CS&E. Typically, . . .

I Convergence is linear at best, often slow, often in doubt.
I “Globalization” is unavailable.
I The problem can be recast as f (x∗) = 0, where f (x) ≡ g(x)− x , for which there

are many very effective algorithms and codes.

But there are often advantages, for example . . .

I ease of implementation, I low cost per iteration,
I Jacobian information unnecessary, I parallel advantages,
I desirable structure preserved, I constraints satisfied.
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Anderson Acceleration

Anderson Acceleration

Given x0 and m ≥ 1.

Iterate: For k = 1, 2, . . .

Set mk = min{m, k}.
Set Fk = (fk−mk

, . . . , fk ), where fi = g(xi )− xi .

Solve minα∈IRmk +1 ‖Fkα‖2 s. t.
∑mk

i=0 αi = 1.

Set xk+1 =
∑mk

i=0 αi g(xk−mk +i ).

Rationale:

Suppose g(x) = Ax + b for A ∈ IRn×n and b ∈ IRn.

Then xk+1 =
∑mk

i=0 αi g(xk−mk +i ) = g(
∑mk

i=0 αi xk−mk +i ). Thus

xk+1 = g(xmin)

where xmin =
∑mk

i=0 αi xk−mk +i has minimal residual within the affine subspace
containing {xk−mk +i}i=0,...,mk

.
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Acceleration Methods — Perspectives

Anderson acceleration:

I Derived from a method of D. G. Anderson (1965).

I Used successfully for many years as Anderson mixing to accelerate the
self-consistent field iteration in electronic structure computations; see C. Yang et
al. (2008).

I Essentially the same method was independently described for particular
applications by Washio & Oosterlee (1997) and Carlson & Miller (1998).

Mathematicians and numerical analysts have extensively studied . . .

I vector-extrapolation methods, especially polynomial methods: (reduced-rank,
minimal-polynomial, modified minimal-polynomial);

I vector and topological ε-algorithms.

See Brezinski & Redivo-Zaglia (1991), Brezinski (2000), Jbilou–Sadok (2000), Smith–Ford–Sidi (1987), . . .

Anderson acceleration is in a distinct category:

I Eirola–Nevanlinna (1989) and U. Yang (1995) methods and related methods
based on quasi-Newton updating;

I “charge-mixing” methods for electronic-structure computations: Pulay (1980,
1982), Kerker (1981), Thomas–Fermi (Raczkowski et al. 2001), Broyden
(Kresse–Furthmüller 1996), . . .

See Fang–Saad (2008) and C. Yang et al. (2008).

#45 Anderson Acceleration DOE Applied Math October 17, 2011 Page 3/17



Anderson Acceleration and GMRES

Joint work with Peng Ni (SINUM, 2011) . . .

I Anderson acceleration is “essentially equivalent” to GMRES on linear problems.

Assume . . .

I Anderson acceleration is not truncated, i.e., mk = k for each k.

I g is linear, i.e., g(x) = Ax + b for A ∈ IRn×n and b ∈ IRn.

I (I − A) is nonsingular.

I GMRES is applied to (I − A)x = b with initial point x0.

Theorem

Suppose these hold and that, for some k > 0, rGMRES
k−1 6= 0 and also

‖rGMRES
j−1 ‖2 > ‖rGMRES

j ‖2 for each j such that 0 < j < k. Then

k∑
i=0

αi x
AA
i = xGMRES

k and xAA
k+1 = g(xGMRES

k ).
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Anderson Acceleration and GMRES (cont.)

Consider . . .

I Ax = b for nonsingular A ∈ IRn.

I Splitting A = M − N for nonsingular M ∈ IRn×n.

I Stationary iteration x+ = g(x) ≡ M−1Nx + M−1b.

Assume . . .

I Anderson acceleration is not truncated, i.e., mk = k for each k.

I GMRES is applied to M−1Ax = M−1b with initial point x0.

Corollary

Suppose these hold and that, for some k > 0, rGMRES
k−1 6= 0 and also

‖rGMRES
j−1 ‖2 > ‖rGMRES

j ‖2 for each j such that 0 < j < k. Then

k∑
i=0

αi x
AA
i = xGMRES

k and xAA
k+1 = g(xGMRES

k ).

NOTE: Applying Anderson acceleration to stationary iterations is not recommended as
a general substitute for left-preconditioned GMRES. However, it may have advantages
in some circumstances.
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Implementation

The main implementational issue is solving the least-squares problem:

min
α∈IRmk +1

‖Fkα‖2 s.t.

mk∑
i=0

αi = 1.

Note that . . .

Fk+1 is obtained from Fk by adding a column on the right and, if k ≥ m, also
dropping a column on the left.

In practice, additional columns may be dropped on the left to maintain
acceptable conditioning.

These low-rank changes allow efficient QR solution of the least-squares problem by
updating the Q and R factors at a cost of O(mk n) flops/iteration.

Good approach: As in Fang–Saad (2008), recast as an unconstrained problem

min
γ∈IRmk

‖fk −Fkγ‖2,

where Fk = (∆f k−mk
, . . . ,∆f k−1) and ∆f i = fi+1 − fi for each i .

See Walker (2011) for details and a MATLAB code.
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Example: The Expectation-Maximization (EM) Algorithm

Formalized by Dempster, Laird, and Rubin (1977).

Context: Statistical estimation (maximum-likelihood) using incomplete data.

General idea: Determine the next approximate MLE to maximize the expectation of
the complete-data log-likelihood function, given the observed incomplete data and the
current approximate MLE.

Marvelous property: The likelihood function increases at each iteration.

Particular application: Estimating the parameters in a mixture density

p(x |Φ) =
m∑

i=1

αi pi (x |φi )

using an “unlabeled” sample on the mixture. Typically, the EM algorithm becomes a
simple fixed-point iteration.
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Example: EM Convergence and “Separation”

A Univariate Normal Mixture.

I pi (x |φi ) = 1√
2πσ2

i

e−(x−µi )2/(2σ2
i ) for i = 1, . . . , 3.

I EM iterations on the means: µ+
i =

{∑N
k=1 xk

αi pi (xk |φi )
p(xk |Φ)

}/{∑N
k=1

αi pi (xk |φi )
p(xk |Φ)

}
.

I Sample of 100,000 observations.

— [α1, α2, α3] = [.3, .3, .4], [σ2
1 , σ

2
2 , σ

2
3 ] = [1, 1, 1].

— [µ1, µ2, µ3] = [0, 2, 4], [0, 1, 2], [0, .5, 1].
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Example: Domain Decomposition, Linear Problem

A Convection-Diffusion Problem.

∆u + cu + dux + euy = f in D = [0, 1]× [0, 1],

u = 0 on ∂D.
I Centered differences, 128× 128 grid.
I 4× 4 array of subdomains, 32× 32 grid per subdomain.
I Restricted additive Schwarz (Cai-Sarkis, 1999), 3 grid lines overlap, no coarse grid.
I m = 50 in Anderson acceleration.
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Example: Domain Decomposition, Nonlinear Problem

A Transonic Duct Flow Problem.

[A(x)ρ(u)ux ]x = 0, 0 < x < 2,

u(0) = 0, u(2) = uR ,
where

ρ(u) =
[
1 + γ−1

2
(1− u2)

]1/(γ−1)

A(x) = 0.4 + 0.6(x − 1)2

uR = 1.15, γ = 1.4

I Finite-difference discretization, 512 equally spaced grid points, first-order density
biasing stabilization (Cai–Keyes–Young 2000, Young et al. 2003).

I “Nonlinear” RAS, 64 grid points/subdomain, 8 grid points overlap.
I “Matrix-free” Newton-GMRES-backtracking method.
I m = 20 in Anderson acceleration.
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Example: Picard Iteration, Variably Saturated Flow

Joint work with Aaron Lott, Carol Woodward, Ulrike Yang (2011) ...

∇[g(u)∇u] = 0 in D = [0, 1]× [0, 1]

u(0, z) = −2, u(1, z) = 1

u(x , 0) = u(x , 1) = −2 + 3x

where
g(u) =

{
1, u ≥ 0

ksψ(|u|), u < 0

ψ(θ) = [1 + αθn]−m/2
(

1− (αθ)n−1

[1+(αθ)n ]m

)2

I Van Genuchten – Mualem parametrization:
— α relates to mean pore size of soil;
— n relates to uniformity of pore distribution;
— m = 1− 1/n;
— ks = 1 here.

I Yavneh – Dardyk (2006): “For a given domain and boundary conditions, this
problem generally becomes more difficult for smaller n and larger α. For n < 2, g ′ fails
to satisfy a Lipschitz condition at u = 0, and g(u) actually tends to a step function for
n→ 1+. For α that is not small compared to one, the solution exhibits a thin
boundary layer near x = 0 ... which narrows quickly as α grows.”
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Example: Picard Iteration, Variably Saturated Flow (cont.)

Popular solution methods:

I Newton’s method.
— fast (up to quadratic) convergence;
— nonsymmetric linear systems;
— requires Jacobian information.

I Picard iteration.
— symmetric positive-definite linear systems;
— no Jacobian information;
— linear convergence, may be slow.

Numerical study:

I Applied Anderson acceleration to a modified Picard iteration (MPI) from
Celia–Bouloutas–Zarba (1990).

I Compared MPI, MPI with Anderson acceleration, and a
Newton-GMRES-linesearch method within KINSOL.

I Finite-difference discretization; 1024× 1024 grid.
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Example: Picard Iteration, Variably Saturated Flow (cont.)

Run-time performance profiles (Dolan–Moré, 2002) for
— modified Picard iteration (MPI),
— MPI with Anderson acceleration using different mAA values.

I 18 selected (α, n) pairs.
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Example: Picard Iteration, Variably Saturated Flow (cont.)

Run-time performance profiles for
— the Newton–GMRES-linesearch method.
— modified Picard iteration (MPI),
— MPI with Anderson acceleration (mAA = 5),

I 408 selected (α, n) pairs in [0.01, 4.0]× [1.1, 4.0].
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Example: Picard Iteration, Variably Saturated Flow (cont.)

Run-time “maps” for
— the Newton-GMRES-linesearch method,
— modified Picard iteration (MPI),
— MPI with Anderson acceleration (mAA = 5).

I 408 selected (α, n) pairs in [0.01, 4.0]× [1.1, 4.0].

Run times (in seconds) for the three methods.
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