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Abstract: We present a line-based Discontinuous Galerkin (DG) method, which combines one-dimensional DG discretizations in a finite difference-type fashion. The result is a
high-order accurate method for fully unstructured meshes, with computational cost similar to finite difference methods. In particular, the Jacobian matrices have between one and two
magnitudes fewer connectivities than for standard nodal DG. This translates directly into a corresponding improvement in execution time for the numerical solvers.

Motivation and goals
• A nodal Galerkin approach typically couples all nodes

inside an element, which gives a stencil size of O(pD).

• A finite difference approach would apply difference ap-

proximations along each coordinate direction, with sten-

cil size O(Dp).

• goal: study unstructured methods with similar stencils.

• line-based dg: apply 1d dg along each coordinate line.

Line-based discontinuous

Galerkin method
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x = x(X)

Map system of conservation laws from an element v

to the reference element V

∂u

∂t
+∇ · F(u) = 0 −→ J

∂u

∂t
+∇X · F̃(u) = 0

where F̃ = ( f̃1, f̃2, f̃3) = JG−1F,

G = ∇Xx and J = det(G).

Consider a curve xjk(ξ) = x(ξ, Xj, Xk).

Find rjk(X1) ≈ ∂ f̃1/∂X1 using a 1d dg procedure.

Find rjk(ξ) ∈ Pp([0, 1])m such that

∫ 1

0
rjk(ξ) · v(ξ) dξ =

∫ 1

0

d f̃1(ujk(ξ))

dξ
· v(ξ) dξ

= ̂̃
f1(u

+
jk
(1), ujk(1)) · v(1)− ̂̃

f1(ujk(0), u−
jk
(0)) · v(0)

−
∫ 1

0
f̃1(ujk(ξ)) ·

dv

dξ
dξ.

Note, that if N = (1, 0, 0), then

f̃1 = F̃ · N = (JG−1F) · N = F · (JG−TN) = F · n

with the (non-normalized) normal vector n = JG−TN.

Therefore, the numerical flux with N+
1 = (1, 0, 0)

can be written

̂̃
f1(uR, uL) =

̂̃F · N+
1 (uR, uL) =

̂F · n+1 (uR, uL),

which involves the original fluxes F in direction n+1 =⇒
Use existing numerical flux functions without change.

Find rjk(ξ) by a standard finite element procedure.

ujk(ξ) =
p

∑
i=0

uijkφi(ξ), rjk(ξ) =
p

∑
i=0

rijkφi(ξ)

Discrete form Mrjk = b, find rjk by solving m linear sys-

tems with (p + 1)× (p + 1) mass matrix M.

Repeat along each direction to obtain semi-discrete for-

mulation,

Jijk

duijk

dt
+

3

∑
n=1

r
(n)
ijk

= 0.

Observations:

• All integrals are one-dimensional.

• No statement about integration/flux points, as inte-

grals are assumed to be exact.

• Numerical fluxes only evaluated point-wise.

• A continuous Galerkin FEM method would have con-

nected neighboring elements globally.

Stencil size and sparsity pattern

Standard Nodal-dg Line-dg

number of connectivities per node (3d hexahedra)
Polynomial order p 1 2 3 4 5 6 7 8 9 10

Line-dg connectivities 10 13 16 19 22 25 28 31 34 37

Nodal-dg connectivities 32 81 160 275 432 637 896 1215 1600 2057

For p = 3 the Line-dg method is 10 times sparser, and for

p = 10 it is more than 50 times sparser than Nodal-dg.

Second Order Systems
For viscous terms, we use an ldg-type approach. Rewrite

the system as a set of first order equations

∂u

∂t
+∇ · F(u, q) = 0, ∇u = q

and define the numerical fluxes

F̂ · n(u, q, n) = {{F(u, q) · n}}+ C11[[u ⊗ n]] + C12[[F(u, q) · n]]

û(u, q, n) = {{u}}− C12 · [[u ⊗ n]] + C22[[F(u, q) · n]]

If C22 = 0, q can be eliminated locally.

If C12 = S±i n±i /2 for some switch function S±i ∈ {−1, 1},

the scheme gets a simple upwind/downwind structure.

Final semi-discrete form becomes

duijk

dt
+

1

Jijk

3

∑
n=1

r
(n)
ijk

= S(uijk, qijk),

1

Jijk

3

∑
n=1

d
(n)
ijk

= qijk,

where both r
(n)
ijk

and d
(n)
ijk

in general depend on u and q.

Time-integration and Solvers
With solution vectors U, Q the system becomes

dU

dt
= R(U, Q), Q = D(U, Q).

If C22 = 0 , then D(U, Q) = D(U) and

dU

dt
= R(U, D(U))

Implicit solvers require solution of equations of the form

(I − α∆tA)∆U = ∆tR(U, D(U))

with

A =
dR

dU
=

∂R

∂U
+

∂R

∂Q

∂D

∂U
= K11 + K12K21.

Problem: K11, K12, K21 sparse but not K12K21

Various options for retaining sparsity:

1. Form Krylov matrix-vector products implicitly with-

out forming K12K21:

Ap = K11p + K12(K21p)

2. Solve in original split form,which requires the solution

of systems involving the matrix

K =




∂R
∂U

∂R
∂Q

∂D
∂U

∂D
∂Q


 =

[
K11 K12
K21 K22

]

3. Other approaches: subiterations, local timestepping,

implicit-explicit, etc

Numerical results

Laminar steady flow around airfoil
Flow around SD7003 foil , with Re = 5000, p = 8.

Steady-state solution by Newton-Krylov iterative method.

Euler vortex
Convergence test for Euler vortex test problem

Optimal convergence of O(hp+1) observed.

Coarsest mesh, with p = 7 Solution (density)
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Unsteady LES-type flow around airfoil

Unsteady Navier-Stokes around

SD7003 airfoil

Mach 0.2, Re = 5, 000, AoA = 30◦,

p = 5 in space, dirk 3/3 in time,

gmres + Jacobi preconditioning,

Quasi-Newton method: Re-use

Jacobians between iterations

and timesteps,

Essentially “explicit performance”

for an implicit scheme: ma-

jority of compute time spent

in the Newton residual

evaluations.

Conclusions
A line-based discontinuous Galerkin method:

• Orders of magnitude smaller stencils than nodal-dg

• Very simple scheme structure, with 1d integrals and

standard point-wise Riemann solvers

• ldg-type fluxes for viscous terms

• Optimal order of accuracy

• Efficient time-stepping by quasi-Newton

Current work includes:

• Efficient parallel solvers

• Shock capturing and RANS

• Extensions to other elements

• More applications
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