
Since its introduction, Molecular Dynamics (MD) has become one of the most important
 computational techniques for the study of the dynamical behaviour of matter at the
 atomic scale, enabling significant advances in physics, chemistry, biology and materials
 science. Despite its enormous success, MD suffers from an important limitation: while it
 can be efficiently parallelized in space, its original formulation is essentially serial in
 time. This severely limits the timescales that are amenable to direct simulation and
 leave many important physical processes out of reach, specially those of thermally
 activated nature that occur only rarely on vibrational timescales. 

This problem was the subject of intense investigation during the past decade and, largely
 following pioneering work carried out at LANL, significant progress was made in the
 development of Accelerated Molecular Dynamics (AMD) methods [1]. AMD methods
 have greatly expanded the horizon of timescales amenable to MD simulations. The
 basic philosophy of these methods is to let MD trajectories (which are often “smarter”
 than we are) identify proper evolution pathways, but to trick them into doing so faster
 than they would normally do (using statistical physics considerations). This is possible
 when there is a significant separation of timescales between vibrations and persistent
 changes in the topology of the system.

This separation of timescales can be exploited in different ways (by correcting for
 changes in temperature as in Temperature Accelerated Dynamics, or in potential energy
 as in hyperdynamics). It can also be used to parallelize the evolution of the system in
 the time domain. This is the basis of the Parallel Replica Dynamics method [2].

A Parallel Replica Dynamics simulation proceeds as follows:
1.  Replicate the current state of the system onto every available processor
2.  Prepare an ensemble of the replica by randomizing the momenta and integrating the
 equations of motion for a correlation time (dephasing step)
3.  Let every replica do MD independently from one another, but periodically monitor for
 any change in state (transition)
4.  As soon as one replica observes a transitions, stop all other replicas
5.  Let the replica that found the transition run until it spends at least one correlation time
 within a state (decorrelation step)
6.  Sum the total MD time spent on every replica, excluding the dephasing time, and add
 it to the MD clock
7.  Go to 1 

The Parallel Replica Dynamics method relies on the fact that rare events have
 exponential escape-time statistics (i.e., that kinetics are of first order). Therefore, the
 probability to observe any given transition on any given replica is a (time-independent)
 constant and the total elapsed time before the first escape of any of the replicas is
 drawn from the same distribution as that of a serial MD simulation. The discrete state-to
-state dynamics of the system is arbitrarily well reproduced by a Parallel Replica
 Dynamics simulation (modulo a correct choice of the correlation time).

While the method is very powerful and useful in practice, its practical scaling is limited by
 the presence of low barriers (fast rates). In this case, the overhead due to the dephasing
 step becomes significant and adding more replicas does not significantly improve the
 performance of the method.

The initial formulation of Parallel Replica Dynamics was based on sound physical
 arguments, but its deeper mathematical structure was left somewhat unexplored. We
 recently carried out an in-depth mathematical analysis of the method based on an
 overdamped Langevin description of the dynamics [3].

Our analysis revealed the crucial underpinning role of the quasi-stationary distribution
 (QSD). The QSD can be defined as the distribution ν, supported within a given state A,
 such that if X is distributed according to ν at time 0, it is still distributed according to ν
 at time t, conditioned on not having left A before t. The QSD corresponds to the first
 eigenvector of the generator of the dynamics with absorbing boundary conditions
 around A. 

The QSD possesses two important properties:
1.  Absorption (escape) times are exponentially distributed with a rate λ1, which is the
 eigenvalue corresponding to the QSD
2.  In the QSD, the absorption rate on any element of the boundary is constant and
 independent of time

The dephasing step of the original algorithm can therefore be interpreted as a
 preparation of the QSD. Starting from a QSD initial state, the Parallel Replica Method
 would be exact in selecting the next escape path and the corresponding escape time.
 In the general case, escapes can (and will) occur before the QSD is perfectly
 established. The role of the decorrelation step can be understood as allowing capture
 of these non-QSD events. At the end of the decorrelation step, one can assume that
 an ensemble of replica running in the current state would by then be distributed
 according to the QSD. For any finite value of the correlation time, this assumption will
 introduce an approximation, but we showed that the error is bounded by 

where λ2 jis the second eigenvalue of the generator, and hence can be controlled
 arbitrarily well by choosing an appropriate τcorr.

This general analysis has an important consequence: it shows that the error in the
 algorithm can be arbitrarily controlled for any definition of the states, not only for the
 commonly used one based on individual basins of attraction of the potential energy
 landscape. 

Parallel Replica Dynamics is able to accelerate the evolution of a system when the
 dynamics proceeds through a sequence of rare, activated events. While this is true of
 many solid-state systems, it is obviously not the case for liquids. In cases where a
 solid phase is in contact with a non-reacting liquid we demonstrated that Parallel
 Replica Dynamics can be adapted to provide an accurate description of the slow
 kinetics perturbed by the fast degrees of freedom [1]. Imagine that the liquid contains
 reactive agents moving diffusively until they react with the solid (e.g., a corrosive
 solution in contact with a metallic surface). This case is no longer amenable to
 standard AMD methods. However, the concept of QSD can be leveraged to
 generalize Parallel Replica Dynamics in order to handle this situation.

Consider the case where the solution has been in contact with the solid for a long time. 
 The solute distribution will then correspond to the QSD for the diffusion equation.
 This simple observation implies that Parallel Replica Dynamics can be used to
 accelerate the dynamics through the use of a simple super-basin approach. The
 algorithm proceeds as follows:
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This implies that we are free to define
 states as we wish, as long as we can
 estimate a proper τcorr. This opens the
 door to the development of sophisticated
 time-wise multiscale schemes, where the
 definition of states can be adjusted on
-the-fly in order to maximize the efficiency
 of the method. This can be done by
 building super-states by lumping of
 shallower states so as to maximize the
 spectral gap λ2-λ1 (the separation of
 timescales between equilibrating inside of
 a state and escaping from the state) [4]. 

The optimal way to reliably identify super
-states remains to be developed, but
 existing strategies can be leveraged.

The definition of states can be
 optimized by lumping individual
 shallow states into super-states

1.  Replicate the current state of the system, excluding
 solute atoms, onto every available processor

2.  Draw random positions of the solute atoms
 according to the QSD (independently on each
 replica) and dephase as usual.

3.  Let every replica do MD independently from one
 another, and monitor for any change in state. These
 now include reactions with solute atoms. Allow for
 solute to come in and out of the simulation cell.

4.  As soon as one replica observes a transition, stop
 all other replicas

5.  Let the replica that found the transition run until it
 has spent at least a correlation time within a state

6.  Sum the total MD time spent on every replica,
 excluding the dephasing time, and add it to the MD
 clock

7.  Go to 1

Step 2 can be efficiently carried out by constantly updating a
 free energy profile for solute atoms and by using it to
 numerically solve for the diffusion QSD. This same
 information can also be used to allow solute atoms to freely
 come in and out of the simulation cell (mimicking a coupling
 with a very large reservoir).

We are now developing a further extension to the method that would allow the solid
 sub-system to act as a source of solute (e.g., through dissolution of adsorbates or
 the crystal itself). Strictly speaking, these solute emission events could be handled
 with very long τcorr, but we believe that more efficient alternatives are possible.
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