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_ e To use (1) with & we introduce the “Backward Propagator Operator” L:
Introduction
L(g)la(x)] := U (x),

e The scattering of linear acoustic radiation by a periodic layered structure is a fundamental model in the

. . . . . , which is, evidently, VERY POORLY CONDITIONED!
geosciences as it closely approximates the propagation of pressure waves in the earth’s crust.

e \We describe new algorithms for: e Our final equation becomes

1. The forward problem of prescribing incident radiation and, given known structure, determining the 0=0Q(g)ld] := (G+H)|L[a]]+wv—H[C]. (2)
scattered field,

2. The Inverse problem of approximating the form of the structure given prescribed incident radiation
and measured scattered data. The Forward Problem

e Each of these algorithms is based upon a novel statement of the problem in terms of boundary inte-

gral operators (Dirichlet-Neumann operators), and a Boundary Perturbation algorithm (the Method of e First, we introduce a perturbative approach to solving (2). It can be shown that, if g(x) = €f(x), f is
Operator Expansions) for their evaluation. sufficiently smooth (e.g., C?), and € is sufficiently small then

{Cv llja GaHvL}(g) — Z{Cm l//m GmHan}Sn
n=>0

l.e., are all analytic in the boundary perturbation.

e It can be shown a posteriori that
i(x;€) = Z i, (x)e"
n=0

. . . so that a natural method to approximate i is by its truncated Taylor series with terms
S. e Consider scattering of an acoustic plane-wave ]

[ n—1
% ﬁi — eiocx—iﬁuy—ia)t _ uie—iwt ﬁn _ _Qal Z Qn—m[ﬁm] ’
(a,-58) y = g(z) =0 _

inside a two—layered medium with interface where, e.g.
\/\/\/\/ shaped by y = g(x) and velocities {c,,c,}. 0o = (Go+Ho)Lo, Q' = L' (Go+Ho) ™.

e Forward problem: Find scattering returns given

e To give a flavor for the algorithm we note that

geometry. ] )
e Inverse problem: Recover geometry given far— B 2 o] N 2 iapx .
Sy A _ field data. GO[&] = Gy _Z_ €p€ — _Z_ ( lﬁ”,p)&pe — (lﬁu,D)ﬁa
v+ kiv =0 | P=— 1l p=
Hy = —if,p, and Ly = exp(—if, pa). We note that Lgl is exponentially smoothing while L is ill-
conditioned.
e The governing equations for the scattered pressure fields {u, v} are The Inverse Problem
2. _

Au+k,u =0 y > g(x) e For the inverse problem we take a different point of view towards (2): We specify ii and seek g.

‘@”{”}2: 0 Yy e Once again, we use the analytic nature of the surface data {{, v} and operators {G,H,L} to express

Av+kiv=0 y < g(x)

Bivp=0 y = o 0(g)[a] = Q(ef)la] = }_ €"Qu(f)la).

u—v=_:= — O iPug y=2g n=0

Oyt — Oy = W := (iB, + io(dcg) ) e Pus y=g, e Linear Model: Using this expansion we see that (2) becomes

where the wavenumbers are k; = ®/c;, the upward—pointing normal is N := (—d,g, 1)’, and the oper- Qolil] + 01 (g)[il] = O(g%). (3)

ators A ; enforce the Outgoing Wave Conditions.

: : . Truncating this at order two, we derive a Linear Model:
e Rayleigh’s Solutions tell us much of what we need to know to solve this problem: I

~0 ~17 —1 -
o o g =—{Q:1()[al}  Qola].
u(x,y) = Z apelapx—l—lﬁu,py’ v(x,y) = Z bpezocpx—z[}v,py7
p=—oc0 p=—o0 e Nonlinear Model: Alternatively, we can cast (2) as

for y > |g|.. and y < — |g|.., respectively. In these equations

N
Qolit] + Q1 (g)[a] + Y Ou(g)a] = O(g").
sl B Je-w @<k n=2
= o+ : = :
% = a+@r/d)p. Py i\/ag—k§ 02> I

Truncating at order N + 1 we derive a Nonlinear Model:

N
Notice that these both solve the Helmholtz equation, and are “outgoing” (i.e., bounded at infinity). gl = {Ql(o)[ﬁ]}_1 (Qo[zfi] + Z 0,.(8") [12]) : (4)
n=2

Surface Formulation where we begin with g° from (3), and proceed until ||g*+! — g*|| < 7.

U(x) = u(x,g(x), V(x):=v(xgx)), | o o2
U'(x) =~ (i) (,8(x)), V() = (9v) (x.8(), Consider the analytic profile y = é¢
With physical parameters

, and the Linear (3) and Nonlinear (4) models for reconstruction.

integral formulas will give us u and v everywhere.

e Furthermore, if we define Dirichlet-Neumann Operators (DNOs) =0, B,=11, B,=355 d=2x a=]1,

and numerical parameters N, = 32, N = 4, T = 10~ we achieve the following results.
G()lU(x)]:=U'(x), H(g)V(x)]:=V'(x), ¥ J

then it suffices to find the Dirichlet traces U and V. E Abs. L™ Error Rel. L™ Error E Num. lter. Abs. L™ Error Rel. L™ Error
e It is not difficult to see that the full system of governing equations simplifies to 0.001 3.40341 x 10”7 0.00125205 0.001 4 1.21923 x 10 4.48531 x 107
0.002 1.35404 x 107> 0.00249062 0.002 5 1.05361 x 107 1.938 x 10~
U-V={_ —GU-HV]=y. 0.003 3.02975 x 107 0.00371528 0.003 6  1.50681x 107" 1.84775x 107"
0.004 5.35726 x 107> 0.00492706 0.004 7 3.99985 x 10~° 3.67865 x 10~/
e Solving for V' in terms of U we find the single equation: 0.005 8.32629 x 10~ 0.00612614 0.005 8 7.41919 x 1077 5.45873 x 10~
0]y o | aseomem wmee g el
. . . . . x 107° 2.2436 x 10
e With a view to the inverse problem, we note that U is an inconvenient unknown: It is defined on the 0.008 0.000209926  0.00965343 0.008 11 8.29894 x 107° 3.81626 x 107°
interface. It is equivalent to solve for the “farfield data” 0.009 0.000264389 0.010807 0.009 12 1.50113 x 1077 6.13594 x 107°
0.01 0.000324838 0.0119501 0.01 13 2.56547 x 107 9.43782 x 107°

i(x) :=u(x,a), a>|gl..



