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Introduction

• The scattering of linear acoustic radiation by a periodic layered structure is a fundamental model in the
geosciences as it closely approximates the propagation of pressure waves in the earth’s crust.

•We describe new algorithms for:

1. The forward problem of prescribing incident radiation and, given known structure, determining the
scattered field,

2. The inverse problem of approximating the form of the structure given prescribed incident radiation
and measured scattered data.

• Each of these algorithms is based upon a novel statement of the problem in terms of boundary inte-
gral operators (Dirichlet–Neumann operators), and a Boundary Perturbation algorithm (the Method of
Operator Expansions) for their evaluation.
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• Consider scattering of an acoustic plane–wave

ũi = eiαx−iβuy−iωt = uie−iωt

inside a two–layered medium with interface
shaped by y = g(x) and velocities {cu,cv}.
• Forward problem: Find scattering returns given

geometry.

• Inverse problem: Recover geometry given far–
field data.

• The governing equations for the scattered pressure fields {u,v} are

∆u+ k2
uu = 0 y > g(x)

Bu{u}= 0 y→ ∞

∆v+ k2
vv = 0 y < g(x)

Bv{v}= 0 y→−∞

u− v = ζ :=−eiαx−iβug y = g
∂Nu−∂Nv = ψ := (iβu + iα(∂xg))eiαx−iβug y = g,

where the wavenumbers are k j = ω/c j, the upward–pointing normal is N := (−∂xg,1)T , and the oper-
ators B j enforce the Outgoing Wave Conditions.

• Rayleigh’s Solutions tell us much of what we need to know to solve this problem:

u(x,y) =
∞

∑
p=−∞

apeiαpx+iβu,py, v(x,y) =
∞

∑
p=−∞

bpeiαpx−iβv,py,

for y > |g|
∞

and y <−|g|
∞

, respectively. In these equations
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Notice that these both solve the Helmholtz equation, and are “outgoing” (i.e., bounded at infinity).

Surface Formulation

•Given Dirichlet and exterior Neumann traces of u and v

U(x) := u(x,g(x)), V (x) := v(x,g(x)),
U ′(x) :=−(∂Nu)(x,g(x)), V ′(x) := (∂Nv)(x,g(x)),

integral formulas will give us u and v everywhere.

• Furthermore, if we define Dirichlet–Neumann Operators (DNOs)

G(g)[U(x)] := U ′(x), H(g)[V (x)] := V ′(x),

then it suffices to find the Dirichlet traces U and V .

• It is not difficult to see that the full system of governing equations simplifies to

U−V = ζ , −G[U ]−H[V ] = ψ.

• Solving for V in terms of U we find the single equation:

(G+H)[U ] =−ψ +H[ζ ]. (1)

•With a view to the inverse problem, we note that U is an inconvenient unknown: It is defined on the
interface. It is equivalent to solve for the “far–field data”

ũ(x) := u(x,a), a > |g|
∞
.

• To use (1) with ũ we introduce the “Backward Propagator Operator” L:

L(g)[ũ(x)] := U(x),

which is, evidently, VERY POORLY CONDITIONED!

•Our final equation becomes

0 = Q(g)[ũ] := (G+H)[L[ũ]]+ψ−H[ζ ]. (2)

The Forward Problem

• First, we introduce a perturbative approach to solving (2). It can be shown that, if g(x) = ε f (x), f is
sufficiently smooth (e.g., C2), and ε is sufficiently small then

{ζ ,ψ,G,H,L}(ε) =
∞

∑
n=0
{ζn,ψn,Gn,Hn,Ln}εn

i.e., are all analytic in the boundary perturbation.

• It can be shown a posteriori that

ũ(x;ε) =
∞

∑
n=0

ũn(x)εn

so that a natural method to approximate ũ is by its truncated Taylor series with terms

ũn =−Q−1
0

[
n−1

∑
m=0

Qn−m[ũm]

]
,

where, e.g.,
Q0 = (G0 +H0)L0, Q−1

0 = L−1
0 (G0 +H0)−1.

• To give a flavor for the algorithm we note that

G0[ξ ] = G0

[
∞

∑
p=−∞

ξ̂peiαpx

]
=

∞

∑
p=−∞

(−iβu,p)ξ̂peiαpx =:−(iβu,D)ξ ,

H0 = −iβv,D, and L0 = exp(−iβu,Da). We note that L−1
0 is exponentially smoothing while L0 is ill–

conditioned.

The Inverse Problem

• For the inverse problem we take a different point of view towards (2): We specify ũ and seek g.

•Once again, we use the analytic nature of the surface data {ζ ,ψ} and operators {G,H,L} to express

Q(g)[ũ] = Q(ε f )[ũ] =
∞

∑
n=0

ε
nQn( f )[ũ].

• Linear Model: Using this expansion we see that (2) becomes

Q0[ũ]+Q1(g)[ũ] = O(g2). (3)

Truncating this at order two, we derive a Linear Model:

g̃0 =−{Q1(·)[ũ]}−1 Q0[ũ].

• Nonlinear Model: Alternatively, we can cast (2) as

Q0[ũ]+Q1(g)[ũ]+
N

∑
n=2

Qn(g)[ũ] = O(gN+1).

Truncating at order N +1 we derive a Nonlinear Model:

g̃k+1 =−{Q1(·)[ũ]}−1

(
Q0[ũ]+

N

∑
n=2

Qn(g̃k)[ũ]

)
, (4)

where we begin with g̃0 from (3), and proceed until
∥∥g̃k+1− g̃k

∥∥< τ .

Results

Consider the analytic profile y = εecos(2x), and the Linear (3) and Nonlinear (4) models for reconstruction.
With physical parameters

α = 0, βu = 1.1, βv = 5.5, d = 2π, a = 1,

and numerical parameters Nx = 32, N = 4, τ = 10−8 we achieve the following results.

ε Abs. L∞ Error Rel. L∞ Error
0.001 3.40341×10−6 0.00125205
0.002 1.35404×10−5 0.00249062
0.003 3.02975×10−5 0.00371528
0.004 5.35726×10−5 0.00492706
0.005 8.32629×10−5 0.00612614
0.006 0.00011928 0.00731342
0.007 0.000161528 0.008489
0.008 0.000209926 0.00965343
0.009 0.000264389 0.010807
0.01 0.000324838 0.0119501

ε Num. Iter. Abs. L∞ Error Rel. L∞ Error
0.001 4 1.21923×10−9 4.48531×10−7

0.002 5 1.05361×10−9 1.938×10−7

0.003 6 1.50681×10−9 1.84775×10−7

0.004 7 3.99985×10−9 3.67865×10−7

0.005 8 7.41919×10−9 5.45873×10−7

0.006 9 2.03556×10−8 1.24807×10−6

0.007 10 4.26912×10−8 2.2436×10−6

0.008 11 8.29894×10−8 3.81626×10−6

0.009 12 1.50113×10−7 6.13594×10−6

0.01 13 2.56547×10−7 9.43782×10−6


