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Conclusions 
We have presented implicit sampling for sequential data 
assimilation. The implicit filter requires, for each particle, the 
minimization of a known, real, scalar function and the solution of 
an underdetermined scalar equation. Using random maps, a 
solution of this equation can be found by solving one equation 
with one variable. The numerical experiments with the SKS 
equation and the geomagnetic model suggest that the implicit 
filter works well in large dimensional problems. The implicit filter 
outperforms SIR and EnKF in all cases considered. 
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Implicit Sampling

Application to the SKS Equation

ut + uux + uxx + νuxxxx = W (x, t)

Implicit Sampling vs. SIR
Traditional Bayesian particle filters [1] (Sampling-Importance-
Resampling (SIR)), follow replicas of the model (called particles) 
to construct a prior probability density function. The prior is 
updated by sampling weights determined by the observations to 
yield a posterior density, to approximate the pdf of the state, 
conditioned on the observations. 

If the dimension of the model is large, particles are likely to stray 
into regions of low probability and the number of particles 
required can grow catastrophically. 
     The standard procedure is reversed in the implicit particle 
filter. Rather than first generating a sample and then computing 
its probability, it first picks a probability and then looks for a 
sample that carries it, taking the observations into account in that 
search. It generates a thin particle beam, sharply focussed 
towards the observations. This focussing effect makes the 
number of required particles manageable.

SIR particle filter

Implicit particle filter

Implicit vs. SIR particle filter

on the strip x ∈ [0,L], t ≥ 0 with L-
periodic boundary conditions. In the 
SKS equation, ν denotes the viscosity 
and W(x,t) is a space-time white noise 
process. Projection of the stochastic 
partial differential equation (SPDE) 
into an N -dimensional subspace 
spanned by N Fourier modes yields an 
Itô–Galerkin approximation to the SKS 
equation in the form of an stochastic 
differential equation. We require 512 
Fourier modes when representing the 
solution and use the exponential Euler 
scheme [7] with time step δ = 0.001 for 
time discretization. We consider 
nonlinear observations in physical 
space (h(x) = x+x3) available at every 
model step. The results of 500 twin 
experiments are shown on the left. We   
b observe that the implicit filter requires only about 10 particles to 

yield estimates with an accuracy for which SIR requires 
thousands of particles. The experiments confirm that the desired 
focussing effect of the particles can indeed be achieved. Further 
experiments with the SKS equation can be found in [4].
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To assess the performance of the filters, we ran 100 twin 
experiments. A twin experiment amounts to: (a) drawing a sample 
from the initial state and running the model forward in time until T 
= 0.2 (one fifth of a magnetic diffusion time) (b) collecting the data 
from this free model run; and (c) using the data as the input to a 
filter and reconstructing the state trajectory.

We ran experiments varying the availability of data in time and 
space and observed that the implicit filter performs well with very 
few (~10) particles while competing methods, such as SIR or the 
ensemble Kalman filter (EnKF) required significantly more 
particles for similar accuracy.

p(x0:q(l+1) | z1:l+1) ∝ p(x0:q(l) | z1:l)p(zl+1 | xq(l+1))p(xq(l)+1:q(l+1) | xq(l))

p(Xj) ∝ p(zl+1 | Xq(l+1)
j )p(Xq(l)+1:q(l+1)

j | Xq(l)
j )

Fj(Xj) = − log p(Xj)

Fj(Xj)− φj =
1
2
ξT
j ξj

Xj = µj + λjLjηj

∂λj

∂ρj
=

ρ

2 (∇Fj)LT
j ηj

xn+1 = R(xn, tn) + G(xn, tn)∆Wn+1

zl = h(xq(l), tq(l)) + Q(xq(l), tq(l))V l

Data assimilation has been recently applied to geomagnetic 
applications and there is a need to find out which data 
assimilation technique is most suitable [8]. We apply the implicit 
particle filter to a test problem very similar to the one first 
introduced by Fournier and his colleagues in [9]. The model is 
given by two SDEʼs

where, gu, gb are scalars, and where W is a stochastic process. 
Physically, u represents the velocity field and b represents the 
secular variation of the magnetic field. We study the above 
equations with ν = 10-3 as in [9], and with gu = 0.01, gb =1. The 
noise process W is spatially smooth. 

We discretize the equations using Legendre spectral elements of 
order 300 and an implicit-explicit scheme with time step δ = 0.02 
for time discretization. The data are the values of the magnetic 
field b, measured at k equally spaced locations. 
     We can exploit the smoothness property of the noise to reduce 
the dimension of the implicit filter by focussing attention on the 
variables driven by the largest noise [10]. In this application, the 
dimension of the filter could be reduced from 600 to 50. The 
minimization required for implicit sampling was carried out using a 
gradient descent method with line-search. The minimization was 
initialized by a free model run and converged typically in 10 steps.

∂tu + u∂xu = b∂xb + ν∂2
xu + gu∂tW (x, t)

∂tb + u∂xb = b∂xu + ∂2
xb + gb∂tW (x, t)

J = det(Lj)ρ
1−rm/2
j

����λ
rm−1
j

∂λj

∂ρj

����

The basic idea of implicit sampling [2,3,4] is to use the available 
observations to find regions of high probability in the target 
density and look for samples within this region. This implicit 
sampling strategy generates a thin particle beam within the high 
probability domain and, thus, keeps the number of particles 
required manageable, even if the state dimension is large.
     Assume we are given a collection of M particles Xj, whose 
empirical density approximates the conditional density and 
suppose the next observation is available the after r time steps. 
Using Bayes' theorem, one can show that

is the pdf of the jth particle given its previous state and the 
available observations. Implicit sampling is a recipe for obtaining 
high probability samples of this pdf. To draw a sample we define, 
for each particle, a function Fj by

With this Fj we solve the equation

where ξj is a realization of the reference variable ξ ∼ N(0, I) and 
where ϕj = min Fj. 

The minimum of Fj can often be obtained by standard methods 
(e.g. Newton–Raphson, gradient descent, or trust-region 
methods). The reference variable ξ is known and easy to sample, 
and by definition most of its samples will be high-probability 
samples near the origin. The corresponding values of Fj will be 
near the minimum ϕj and therefore will have a high probability, so 
that with high probability we will have high probability samples. 
     The empirical density defined by the new particle positions 
differs from the target density so that each sample must be 
weighted by the ratio of its probability with respect to the target 
density to its proposal probability [1]. The weight for each particle 
is wj = exp(-ϕj)J, where J is the Jacobian of the map x→ξ. Here we 
choose this map to be random:

where Fj (μj) = ϕj and ηj =ξj / |ξj| is uniformly distributed on the unit 
sphere.The invertible square matrix Lj is deterministic, under our 
control, and remains to be chosen. We compute λj by substitution 
and obtain a single equation with the single unknown λj. A data 
assimilation problem of arbitrary dimension boils down to the 
solution of a single algebraic equation per particle. For its 
solution, we can again use standard methods (e.g. Newton–
Raphson). 
     It remains to compute the Jacobian. After some algebra, it can 
be shown that

where ρj = ξjTξj and det(A) denotes the determinant of the square 
matrix A. The scalar derivative can be computed by

Use data to update the forecasts of numerical models

Application to geomagnetism: vast 
amounts of new satellite data 
should be used to update MHD 
models.

The task in data assimilation is to use available data to update 
the forecast of a numerical model. The numerical model is 
typically given by a discretization of a stochastic differential 
equation (SDE)

where x is an m-dimensional vector, called the state, tn, n = 0,1,2,... 
is a sequence of times, R is an n-dimensional vector function, G is 
an m x m matrix and dW is an m-dimensional vector, whose 
elements are independent standard normal variates. The random 
vectors G(xn,tn)ΔW represent the uncertainty in the system. The 
data 

are collected at times tq(l), l = 0,1,2,...; for simplicity, we assume 
that the data are collected at a subset of the model steps, i.e. q(l)
=rl, with r being a constant. In the above equation, z is a k-
dimensional vector (k ≤ m), h is a k-dimensional vector function, V 
is a k-dimensional vector whose components are independent 
standard normal variates, and Q is a k x k matrix.  

Particle filters are sequential Monte Carlo methods for data 
assimilation [1] which approximate the probability density function 
(pdf) of the state given the observations, p(x0:q(l) | z1:l). The state 
estimate is a statistic (e.g. the mean, median, mode etc.) of this 
pdf. Most particle filters rely on the recursive relation

In the above equation p(x0:q(l+1) | z1:l+1) is the pdf of the state 
trajectory up to time tq(l+1) given all available observations and is 
called the target density; p(zl+1 | xq(l+1)) is the probability density of 
the current observation given the current state and can be 
obtained from the observation equations. The pdf p(xq(l)+1:q(l+1) |      
xq(l)) is the density of the state trajectory from the previous 
assimilation step to the current observation, conditioned on the 
state at the previous assimilation step, and is determined by the 
model equations.

We test our implementation of the implicit filter by applying it to 
the stochastic Kuramoto–Sivashinsky (SKS) equation of 
combustion theory [5,6]


