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Motivation

The Parallel Full Approximation Scheme in Space and Time (PFASST) algorithm is a novel approach for
parallelizing PDEs in time. In practice, temporal parallelization is only attractive if the temporal parallelization
has greater parallel efficiency than (further) spatial parallelization. Hence, the focus of this research is on
constructing time-parallel methods with good parallel efficiency. To efficiently parallelize PDEs in time, the
PFASST algorithm decomposes the time domain into several time slices. After a provisional solution is obtained
using a relatively inexpensive time integration scheme, the solution is iteratively improved using a deferred
correction scheme. To further improve parallel efficiency, the PFASST algorithm uses a hierarchy of discretizations
at different spatial and temporal resolutions and employs an analog of the multi-grid full approximation scheme
to transfer information between the discretizations.

PFASST

The PFASST algorithm can be described in terms of two propagators, denoted here by F (fine) and G (coarse).
Both F and G propagate an initial value by approximating the solution to

u(t) = u0 +

∫ t

0

f(τ, u(τ )) dτ

from tn to tn+1.

PFASST uses the Spectral Deferred Correction (SDC) scheme for both the F and G propagators. A
single time step [tn, tn+1] is divided into a set of intermediate sub-steps by defining intermediate points
tm ∈ [tn, tn+1]. The intermediate points are typically chosen to correspond to Gauss-Lobatto or Gauss-Radau
quadrature points. SDC then constructs higher-order accurate solutions within one time step by iteratively
approximating a series of correction equations at the intermediate nodes using lower-order methods. For
example, an explicit SDC scheme based on the forward Euler discretization is

yk+1

m+1 = ykm +∆tm
[

f(tm, y
k+1

m )− f(tm, y
k
m)
]

+ Im+1

m

where

Im+1

m ≈

∫ tm+1

tm

f(τ, yk(τ )) dτ.

The time interval of interest [0, T ] is divided into N uniform intervals [tn, tn+1] which are assigned to
the processors Pn where n = 1 . . . N . A provisional solution is obtained using the G propagator in serial.
This solution is then improved by alternately applying the F propagator in parallel and the G propagator in serial.
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Speed up and efficiency

For PFASST to be efficient, the G propagator must be less computationally expensive than the F propagator.
To achieve this, the G propagator is typically defined on coarse temporal and spatial grids. The multi-grid Full

Approximation Scheme is used to transfer information between the discretizations.

If the PFASST iterations converge to the required accuracy in Kp iterations, the total cost on N pro-
cessors is

Cp = NΥG +Kp(ΥF + ΥG + ΥO).

where ΥG is the cost of G, ΥF is the cost of F , and ΥO is the overhead associated with communication,
interpolation, restriction etc. Compared to a serial SDC method of similar accuracy that requires Ks iterations
to converge (so that Cs = NKsΥF ), the efficiency of the PFASST algorithm is

E =

[

Nα

Ks
+

Kp

Ks

(

1 + α + β
)

]−1

where α = ΥG/ΥF and β = ΥO/ΥF .
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Parallel SDC sweeps

The steps of the PFASST algorithm are depicted in the diagram below for the first 4 processors of a three-level
V-cycle run. Each iteration is comprised of several pieces:

Fn SDC sweep on level n, with level 0 being the finest
Rn+1

n time/space restriction from level n to level n + 1
Inn+1 time/space interpolation from level n + 1 to level n

The coarse sweeps at the bottom of diagram correspond to the computation of the provisional solution at the
beginning of the algorithm. The height of the boxes representing sweeps, interpolations, and restrictions is
proportional to how many function evaluations must be performed.
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The finest level is red, the middle level is blue, and the coarsest level is green. Gradients depict restriction or
interpolation.

Kuromoto-Silvashinsky

The Kuramoto-Silvashinsky (KS) equation is

ut +
1

2
|∇u|2 +∇2u +∇4u = 0 or in 1d ut + uux + uxx + uxxxx = 0.

It arises as a model for interfacial instabilities in a variety of physical contexts, and has been shown to exhibit
nontrivial dynamical behavior, both spatially and temporally, including chaos. We consider a 1d periodic domain
with initial conditions

u(0) = 0.1 sin(6πx/L) + 0.2 sin(8πx/L) + 0.3 sin(14πx/L).
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Solution of the 1d KS equation at time t = 64.
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Error vs time-step for each iteration
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Convergence of the PFASST algorithm for the 1d KS equation.

Vorticity

The vorticity formulation of the 2D incompressible Navier-Stokes equation is

∂tω + u · ∇ω = ν∇2ω

where ω is the vorticity, u = (u, v) is the velocity, and ν is the viscosity. We consider a doubly periodic domain
[0, 1]× [0, 1] with initial conditions

u0(x, y) = −1.0 + tanh
(

ρ(0.75− y)
)

+ tanh
(

ρ(y − 0.25)
)

v0(x, y) = −δ sin
(

2π(x + 0.25)
)

where ρ = 100 and δ = 0.05. These conditions correspond to two very thin horizontal shear layers at
y = 0.5± 0.25 with a slight disturbance in the vertical velocity.

For small grids the solution is severely under-resolved. This is demonstrated by computing the solution
to time t = 1 using a pseudo-spectral spatial method and an SDC time stepper for various grid sizes.
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Serial solutions for various spatial discretizations.

The lower resolution runs exhibit spurious oscillations throughout the domain and have two spurious vorticies.
These runs are clearly under-resolved. The high resolution run does not have spurious vorticies and appears to
be fairly well behaved.

Despite the under-resolution of the coarser levels, the multi-level PFASST solutions are essentially the
same as the high-resolution serial run.
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PFASST solutions for various number of levels.

Timing

The timing diagram below was generated from MPI timing information collected during a 3-level PFASST run
on 64 processors for a three-dimensional PDE. Two SDC sweeps were performed for each coarse (level 2) sweep.
Six PFASST iterations are displayed.
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The efficiency of the PFASST algorithm has been explored on various machines at UNC-CH. Typical parallel
efficiencies range from 40–70% on runs with 4 to 512 processors.

For example, the 2d KS equation was run to a final time of t ≈ 166 with a time step of ∆t = 1.0/256.
The PFASST levels used were

• fine (F): 512x512 spatial grid, 5 Gauss-Lobatto SDC nodes; and

• coarse (G): 256x256 spatial grid, 3 Gauss-Lobatto SDC nodes.

The parallel run was performed using two coarse SDC sweeps per PFASST iteration, and 6 PFASST iterations
per time-step. The serial run was performed on the fine level with 10 SDC sweeps per time step.

With 128 processors PFASST acheived a speedup of 72 (56% efficient).


