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Problem: compute inverse transcendental functions of
polynomial chaos expansion (PCE)

Most classical methods for computing transcendentals are not useable
with PCE

Computation of double-precision transcendentals usually involves
piecewise functions

Example: computation of arctangent

0 < x ≤ 1: do something fast and accurate (e.g. Pade approximant,
Chebyshev fit)
x > 1: map into [0, 1] using arctan(x−1) = π

2
− arctan x

x < 0: use odd symmetry to map to [0,∞)

Piecewise approximations not suitable in PCE work

Workarounds

NISP

Line integration (reduction to 1D quadrature or ODE)



Why are stochastic inverse transcendentals challenging?

Taylor series approximations not convergent

Support of PDF can extend beyond radius of convergence

Non-polynomial integrands make line integration expensive

Line integration requires linear solve (or worse) at each quadrature
point
Convergence of quadrature can be slow

Non-polynomial behavior requires high order PCE with accurate
coefficients

tan−1 is bounded
log is singular at zero
sin−1 non-differentiable at ±1



Inverse transcendentals through line integration

Line integration method (Debusschere et al.) reduces computation of
stochastic transcendentals to 1D quadrature

Arctangent

tan−1 u(ξ) = u(ξ)

∫ 1

0

dt

1 + u(ξ)2t2

Arcsine

sin−1 u(ξ) = u(ξ)

∫ 1

0

dt√
1− u(ξ)2t2

Logarithm

log u(ξ) = (u(ξ)− 1)

∫ 1

0

dt

1 + (u(ξ)− 1)t



A different approach to computing inverse transcendentals:
Borchardt-Gauss (BG) iterated means

Example: BG computation of arctangent

Initialize:
a0 = 1 g0 =

(
1 + x2

)1/2

Loop: syncopated arithmetic-geometric mean

an+1 =
1

2
(an + gn) , gn+1 =

√
gnan+1

B(a0, g0) = limn→∞gn

Postprocess:

arctan x =
x

B(a0, g0)

Requires only addition/subtraction, multiplication/division, square root

This is a very old idea: Archimedes developed a similar algorithm using harmonic means
instead of geometric means.



Why it works: half-angle identities

BG computation of arctangent

If θ = arctan(x) then sin(θ) = x√
1+x2

, cos(θ) = 1√
1+x2

θ = limn→∞ 2n sin
(
θ
2n

)
Iterated half-angle identity:

2n sin

(
θ

2n

)
=

sin(θ)∏n
k=1 cos

(
θ
2k

)
Sequence of geometric means gn goes to

∞∏
k=1

cos

(
θ

2k

)
from below

an → same limit from above

arctan(x) = θ = sin(θ)∏∞
k=1

cos
(

θ
2k

) = x

B(a0,g0)
√

1+x2



The Borchardt-Gauss-Carlson algorithm (BGC)

BG computation of other inverse transcendentals is similar

same AGM recurrence as arctangent

different initialization and postprocessing

Convergence is linear or better

Original BG: contraction factor → 1
4 per iteration

Carlson: Accelerate via Richardson extrapolation (BGC)

Contraction factor ≈ 1
1000

per iteration
Mildly superlinear: contraction factor improves per step
Some overhead, but no additional square roots

Bottleneck is square root calculation

Use weak square root: compute u =
√
f by solving (v , u2 − f ) = 0



Numerical results on the reals

Convergence of BGC arctangent and logarithm
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Very fast convergence over a large dynamic range



BGC has the features we’d like for PCE computation

Good features

Single algorithm applicable throughout domain of function

Needs only arithmetic plus square root

Also

Cost determined by square root cost

Needs ∼ 5 square roots per computation

Scales well with dimension (equivalent to scaling of reciprocal)



All elementary inverse transcendentals can be expressed in
terms of the Borchardt-Gauss mean

The inverse transcendentals through the BG mean

Function Relation to BG mean Domain of applicability

tan−1 (x) x
B(1,
√

1+x2)
−∞ < x <∞

sin−1 (x) x
B(
√

1−x2,1)
−1 ≤ x ≤ 1

cos−1 (x)
√

1−x2

B(x,1) 0 ≤ x ≤ 1

tanh−1 (x) x
B(1,
√

1−x2)
−1 < x < 1

sinh−1 (x) x
B(
√

1+x2,1)
−∞ < x <∞

cosh−1 (x)
√
x2−1

B(x,1) x ≥ 1

log (x) x−1
B( x+1

2 ,x)
x > 0



Some theory

Assuming no truncation of PCE

Neglecting truncation of PCE, convergence theory for BG is simple
on any Banach space

On compact domain, B(an, gn) converges uniformly for any bounded
a0, g0.

As on R, convergence is linear (factor 0.25, factor ∼ 10−3 with
Carlson)

Including truncation of PCE

Assuming truncation of PCE in square root, have proved weak
convergence of B(an, gn)



Cost metrics for BGC iteration and line integration

Definitions

NQ is number of quadrature points in line integration

NNewt is number of Newton steps to compute square root

NBGC is number of outer iterations in BGC method

Cost of Newton step for a square root is 1 linear solve plus 1 symmetric matrix-matrix multiply ( 5
2

linear solve equivalents)

Cost required for each function (linear solve equivalents)

Arctangent

Line integration: NQ

BGC: 5
2
(NBGC + 1)NNewt + 1

Arcsine

Line integration: NQ

(
5
2
NNewt + 1

)
BGC: 5

2
(NBGC + 1)NNewt + 1

Logarithm

Line integration: NQ

BGC: 5
2
NBGCNNewt + 1



Numerical results: log(x) on [10−2, 2]

Error and cost for stochastic logarithm

Errors shown for p = 4, 12, 20

Line integration: number of linear solves grows with polynomial order

BGC: number of linear solves independent of polynomial order



Numerical results: sin−1(x) on [0.1, 0.99]

Error and cost for stochastic arcsine

Errors shown for p = 4, 12, 20

Line integration and BGC have nearly identical accuracy

BGC significantly less expensive than line integration



Numerical results: tan−1(x) on [−2, 9]

Error and cost for stochastic arctangent

Errors shown for p = 4, 12, 20

Cost nearly identical for BGC and line integration



Conclusions

The BGC algorithm is a promising approach to the fast and robust
calculation of stochastic inverse transcendental functions

Rapid convergence

Accuracy comparable to line integration

Efficiency comparable to line integration for arctangent

Efficiency superior to line integration for logarithm and arcsine

Implemented using Stokhos package of Trilinos library


