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The efficient computation of multiphysics simulations is challenging 
for several reasons:  strong coupling of the multiphysics systems, 
high nonlinearity and a large spectrum of interacting length and 
time scales. This study evaluated the parallel scaling and 
performance of two multiphysics application codes for large-scale 
simulations. One application code simulates the drift-diffusion 
equations for semiconductor devices  while the other simulates 
resistive MHD.  A finite element method is used to discretize the 
system of PDEs on an unstructured mesh, then a fully-implicit 
Newton-Krylov solution method is employed.  High fidelity solutions 
require the efficient and scalable solution of the large sparse linear 
systems.  We considered the scaling of three different algebraic 
multigrid aggregation schemes for the drift-diffusion system, and 
found that the choice of aggregation scheme can have a significant 
impact on performance.  Weak scaling studies for the drift-diffusion 
system have been performed up to 140,000 cores on both Blue 
Gene/P and Cray XE6 platforms. 

Abstract 
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Resistive MHD Model 
(J. Shadid, R. Pawlowski, E. Cyr, L. Chacon)
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Semiconductor Drift-Diffusion Model 

Electric 
potential

(G. Hennigan, R. Hoekstra, J. Castro, D. Fixel, R. Pawlowski, 
E. Phipps, L. Musson, T. Smith, J. Shadid, P. Lin)

•  ψ: electric potential 
•  n: electron concentration 
•  p: hole concentration 

•  C: doping profile 
•  R: generation-recombination 

term 

Stabilized FEM with Newton-Krylov 
solver with Trilinos Solvers (both 
MHD and drift-diffusion use same 
solver technology) 

Defect species: each additional species adds an additional 
transport-reaction equation 
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Trilinos ML Library: Algebraic Multigrid Preconditioners 

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (3) nodes •  Aggregates to produce a coarser 
operator  

•  Create graph where vertices are 
block nonzeros in matrix Ak 

•  Edge between vertices i and j 
added if block Bk(i,j) contains 
nonzeros 

•  Decompose graph into 
aggregates 

•  Restriction/prolongation operator 
•   Ak-1 = Rk Ak Pk 

 
 

 
 

(R. Tuminaro, J. Hu, C. Siefert, M. Sala, M. Gee, C. Tong) 

•  Aggressive coarsening with graph partitioner and pre-specified # of levels 
•  Large difference in size between levels 
•  Graph partitioner: serial for all levels, parallel for final level 

•  Petrov-Galerkin smoothed aggregation 
for nonsymmetric matrices 

•  Separate restriction smoothing 
•  Local damping parameters 
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Coarsening Schemes 

• Aggressive coarsening with graph partitioner 
• Serial graph partitioner (METIS) for each aggregation except 

for final which uses parallel graph partitioner (ParMETIS) 
•  (Aggressive) coarsening with graph partitioner and matrix 

repartitioning (Zoltan; RCB) 
• Graph partitioner (METIS) for all levels 
• Keep coarsening until matrix is below threshold size 
• More “mesh nodes” on cores; better quality aggregates 

• Uncoupled aggregation with matrix repartitioning 
• Uncoupled: stencil is nearest neighbor, aggregates cannot 

span processes 
• Keep coarsening until matrix is below threshold size 
• Smaller difference in size between levels, e.g. ~9 for FEM 2D 

drift-diffusion 
• Better quality aggregates 
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BG/P Weak Scaling: Different Coarsening Schemes 

•  Iteration Count •  CPU Time 

•  2D BJT steady-state drift-diffusion 
•  4-level aggressive coarsening V(1,1) 
•  METIS with matrix repartitioning, Uncoupled with matrix repart 
•  Scaled to 8192 cores and 250 million DOF; 31000 DOF/core 
 

•  GMRES 7 



BG/P Weak Scaling Study: 1-level vs. Multigrid 

•  2D BJT steady-state drift-diffusion 
•  Uncoupled aggregation with matrix repartitioning 
•  Problem scaled to 8192 cores and 252 million DOF 
•  GMRES Krylov solver 

 
core fine grid 1-level ILU Uncoupled V-cyc Uncoupled W-cyc 
  unknowns ave its per time per ave its per time per ave its per time per 
  Newt step Newt (s) Newt step Newt(s) Newt step Newt (s) 

32 988533 214 55 21 13.5 14 13.1 

128 3.95E+06 435 192 26 14.9 15 13.6 

512 1.58E+07 859 697 33 17.5 16 15.6 

2048 6.31E+07 1697 2634 46 21.6 20 18.1 

8192 2.52E+08 3377 10559 58 25.6 25 22.6 

•  Compared with 1-level preconditioner for 8192-core, 252 million DOF case 
•  Uncoupled agg V-cyc reduces iterations by 182x, time by 412x 
•  Uncoupled agg W-cyc reduces iterations by 422x, time by 467x 
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Reducing Iteration Count: Improved Aggregation 

•  Uncoupled with matrix repartitioning  
•  more levels (up to 7) 
•  better aggregates 

•   Significantly reduces iterations: W-cyc by 
~8x, V-cyc by ~3x for 2 billion DOF for 64k 

•  Time reduction: W-cyc 3.6x 2 billion DOF, 64k 
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Uncoupled Aggregation: Time/iteration on BG/P 

•  TFQMR: time/iteration 
•  V-cyc time/iteration flat from 
64 to 64k cores 
•  W-cyc time/iteration not 
doing well due to increase in 
work on coarse levels (7-lev) 
•  V-cyc and W-cyc about 
same total time; but W-cyc 
had fewer iterations/Newton  
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Weak Scaling to 147,000 Cores on IBM BG/P 

•  10,000 DOF/core; 1.47 billion DOF at 147,000 cores 
•  GMRES; Uncoupled aggregation with matrix repartitioning  
•  Problem size increased 2304x: W-cyc iter increased 2.0x; 
(prec setup+Aztec) time increased 7.2x 

2D Steady-state Drift-diffusion BJT 
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Weak Scaling to 147,000 Cores: Time/Iteration 

• 10,000 DOF/core; 1.47 billion 
DOF at 147,000 cores 
•  TFQMR uncoupled aggregation 
•  V-cyc: time/iteration 

•  64 to 64k cores increases 
10% (1024x size increase) 
•  64k to 144k increases 9% 

•  W-cyc time rapidly increases 
due to larger amount of work at 
coarser levels 
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Overall Performance: Still Have More Work To Do 
•  Time per iteration scales well for V-cycle 
•  Next challenge to improve overall performance! 

•  Improve preconditioner setup time 
•  Improved repartitioning to minimize data movement in 
traversing mesh hierarchy and application of preconditioner 
•  Eliminate re-computation of symbolic graph algorithms for 
projection and for matrix graphs (static meshes)  
•  Work to obtain true h-independent iteration counts 

Time per Krylov Iteration Linear Solve Time per Newton Step 13 



Cray XE6 and IBM BG/P Weak Scaling 

•  Steady-state drift-
diffusion BJT 
•  TFQMR time per iteration 
•  Cray XE6 2.4GHz 8-core 
Magny-Cours 
•  IBM Blue Gene/P 850 
MHz quadcore PowerPC  
•  10,000 DOF/core 
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2D Resistive MHD: Island Coalescence 
Driven Magnetic Reconnection 

• Half domain symmetry on 
[0,1]x[-1,1] with S=1e+4 

•  Linux cluster: Nehalem 
processors and 
InfiniBand interconnect 
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(with R. Pawlowski, E. Cyr, L. Chacon)



Transient Kelvin-Helmholtz CFD 
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(with Eric Cyr, R. Pawlowski)



Transient Hydromagnetic Kelvin-Helmholtz Problem 

Linux cluster: Quadcore Nehalems with InfiniBand 

512 cores 8 cores 

No magnetic field With magnetic field 
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Re = 1000, S = 10,000, CFL = ~2.5 

(with R. Pawlowski, E. Cyr, L. Chacon)



Cray XE6 Preliminary Weak Scaling Kelvin-Helmholtz 
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•  Re=5000, CFL ~2.5 
•  ML: uncoupled 
•  Cray XE6: dual-socket 2.4GHz 8-core Magny-Cours 
•  Next: Higher Re, MHD problems, larger problems 



Concluding Remarks and Future Work 

•  Newton-Krylov/AMG methods can provide an effective, 
robust and efficient solution technology for a range of highly-
nonlinear multiple-time-scale multiphysics systems.  

•  Massively parallel simulations on up to 140,000 cores 
•  Time per iteration for V-cycle scales well 
•  Next challenge to improve preconditioner setup and 

iteration count 
•  Future work: MHD problems at scale 
•  Issues 

•  Strong convection effects, hyperbolic systems
•  Highly non-uniform FE aspect ratios
•  Hybrid parallelism; GPUs/accelerators
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