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• Silling proposes the peridynamic 

nonlocal continuum theory 

 

 

 

 

 

 

 

 

 

 Motivation: materials undergoing 

discontinuous deformation 

 Goal: Dynamic material failure 

simulations 

 Key: Nonlocal model of force via 

integral operators 

 Generalization to “State-based” 

theory proposed in 2007 

• A statistical mechanical basis for 

nonlocality appears in 

 

 

 

 

 

 Important conclusion is that 

nonlocality is intrinsic to continuum 

balance laws 

• Recent review 

 

 

 

 

 

 Balance of energy; second law of 

thermodynamics 

INTRODUCTION 

 Mathematical analysis for the 

peridynamic continuum theory; 

preliminary theory given in 

 

 

 

 

 

 

 

 
 In particular, provide a mathematical 

analysis for the state-based theory 

• Describe volume-constraints, the 

nonlocal analogue of boundary 

conditions 

• Analysis facilitated by the development 

of a nonlocal vector calculus; 

preliminary development given in 

 

 

 

 

• Short-term goal: linear peridynamic 

materials, diffusion, numerical analysis 

• Long-term goal: nonlinear peridynamic 

materials, coupling with the classic 

theory and molecular dynamics 

OBJECTIVES 

• Balance of linear momentum 

 

 

 

• Balance of linear momentum is equivalent to or action-reaction. 

 

 

 

 

• Nonlocal because force may be nonzero even when 1 and 2 are not in contact 

 

 

 

 

• Balance of energy 

 

 

 

 

 

 

 

 

 

 

 

• Constitutive relations 

Define the deformation state                                                           so that the Force 

 

State                                depends collective motion 

 

The needed relations can be written as 

 

• Can now discuss the well-posedness of the balance laws; in particular for linear 

materials 

• Can also show that the second law of thermodynamic is not violated for classes of 

materials  

OVERVIEW 

• Special case of the balance of energy of linear diffusion (modeling anomalous diffusion) 

serves to introduce the nonlocal vector calculus and provide well-posedness 

• Consider the nonlocal Dirichlet problem (steady-state nonlocal diffusion) 

 

 

 

 

• The solution constrained over the volume c 

• A volume-constrained problem is the nonlocal analogue of a boundary value problem 

 

 

 

 

 

 

•  and * are the nonlocal divergence and it’s adjoint; the operator * is the 

nonlocal Laplacian 

• The kernel  determines the regularity for the volume-constrained problem; an 

integrable kernel implies that *u : L2sc L2sc; no smoothing of the data 

• Fractional smoothing occurs for (x,y)(x,y)(x,y) |x-y|-n-2s,0<s<1 because then 

*u : H
ssc H

-ssc 

• Can extend to nonlocal Neumann, Robin problems; also consider peridynamic linear 

elastic volume-constrained problems 

CASE STUDY: NONLOCAL DIFFUSION 

SUMMARY 

 Peridynamic continuum theory 

reformulated using a nonlocal vector 

calculus 

 Variational formulation leads to the 

well-posedness of the 

peridynamic equilibrium equation for 

linear isotropic solids  

nonlocal linear diffusion 

 Deformation can be discontinuous 

 Volume-constraints, the nonlocal 

analogue of boundary conditions, are 

crucial 

Related work 
 Probabilistic interpretation for  nonlocal 

linear diffusion 

 Nonlocal, nonlinear advection 

 Finite element formulation; see  

 

 

 

 

 

 Two Ph.d theses; Pablo Seleson (FSU) 

and Nate Burch (CSU) 

PUBLICATIONS 

1. A nonlocal vector calculus, nonlocal 

volume-constrained problems, and 

nonlocal balance laws SAND 2010-

8353J (Q. Du, M. Gunzburger, R. 

Lehoucq, K. Zhou). 

2. An approach to nonlocal, nonlinear 

advection SAND 2011-3164J (Q. Du, J. 

Kamm, R. Lehoucq, M. Parks). 

3. Analysis and approximation of 

nonlocal diffusion problems with 

volume constraints SAND 2011-3168J 

(Q. Du, M. Gunzburger, R. Lehoucq, K. 

Zhou) 

4. Application of a nonlocal vector 

calculus to the analysis of linear 

peridynamic materials SAND 2011-

3870J (Q. Du, M. Gunzburger, R. 

Lehoucq, K. Zhou) 

5. A posteriori error analysis of finite 

element method for linear nonlocal 

diffusion and peridynamic models (Q. 

Du, L. Ju. L. Tian, K. Zhou) 

ACKNOWLEDGEMENTS 

• Sandia National Laboratories is a multi 

program laboratory managed and 

operated by Sandia Corporation, a 

wholly owned subsidiary of Lockheed 

Martin Corporation, for the U.S. 

Department of Energy's National Nuclear 

Security Administration under contract 

DE-AC04-94AL85000 

 

 

 

• DOE office of Advanced Scientific 

Computing Research (ASCR) 

Mathematical and numerical analysis of 

peridynamics for multiscale materials modeling 

 

 

 

Qiang Du (PSU), Max Gunzburger (FSU), Rich Lehoucq (SNL) 

 

 
3

( , ) ( , ) ( , , ) ( , , ) ( , )x t y x t x x t x x t dx b x t      t t

[ , ] : ( , ) ( , )x t x x y x t y x t x     Y

   
21 2 1

1 2 1 2

( , , ) ( , , ) ( , , ) ( , , ) 0

& ,

x x t x x t dx dx x x t x x t dx dx
   

        

     

   t t t t

 
3

Rate of change of momentum External forceForce exerted upon 
upon 

( , ) ( , ) ( , , ) ( , , ) ( , )x t y x t dx x x t x x t dx dx b x t dx
  




       t t

 ˆ[ , ] [ , ]x t x tT T Y

 
3

3

Internal energy Kinetic energy over Supplied power to 

Supplied 

1
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

2

( , )

d d
x t dx y x t y x t dx x x y x t x x y x t dx dx

dt dt

q x x dx dx






  

 



     

 

   

 

t t

thermal power to 

   

   

   

*

*

( ) : ( , ) ( , ) ( , ) , ( , ) ( , )

( , ): ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )2 , )( ) (

n

n

f x f x y f y x x y dy x y y x

x y u y t u x t x y

u u y t u x t x y x y x y dy

u

x

    

  

   





α α α

α

α α

 
3 3

Absorbed power density Thermal power

( , ) ( , ) ( , ) ( , ) ( , )x t x x y x t y x t dx q x x dx        t

 

 

ˆ( , , ) [ , ] [ , ]

ˆ( , , ) [ , ] [ , ]

x x t x t x x x t x x

q x x t Q x t x x Q x t x x

     

     

t T T Y

Y

 * on

on

s

c

u f

u g

  

 

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

