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Motivation

• Water has been extensively and successfully investigated experimentally, but large
uncertainty still characterizes water models widely employed in simulations.

• Common approaches are based on empirical force-field descriptions: e.g. RWK, SPC/E,
TIP4P, TIP4P-Ew and TIP5P.

• Capable of reproducing some physical properties of water with good accuracy. TIP4P water molecule

Goals

• Develop a framework to quantify uncertainty in Molecular Dynamics (MD) simulations of
water, employing Polynomial Chaos (PC) representation of uncertainties.

• Analyze and control the effect of parametric uncertainty and intrinsic (thermal) noise.
• Determine or refine a set of force-field parameters for TIP4P water with a reformulated

Bayesian inference approach using PC surrogates (Marzouk et al. 2007).

MD Simulations p

• Cubic domain (xyz): 37.2 Å3.

• Periodic boundary conditions.

• TIP4P water: 1728 molecules.

• NPT simulations: P=1 atm, T=298 K.

• LAMMPS (lammps.sandia.gov).

• Focus on time-averaged density (ρ),
self-diffusivity (D) and enthalpy (H)
collected during the steady state.

• Uncertainty in the force-field
parameters⇒ MD predictions (ρ, D,
H) become random variables.

Figure: Atomistic system.

UQ Methods

• PC expansion of an R-valued random variable (RV) X :

X =
∞∑

i=0

ciΨi(ξ)

with orthogonal polynomials Ψi(ξ) of normalized RV ξ:

ξ ∼ U [−1,1] =⇒ Ψi Legendre polynomials

• Generalizes to higher-dimensional spaces: X = F(ξ1, . . . , ξn).

1) Non-Intrusive Spectral Projection (NISP):

ci =
1

〈Ψi,Ψi〉

∫
Ω

XΨi(ξ)pf (ξ)dξ

where pf (ξ) is the probability density of ξ.
∗ Typically computed using quadrature rules.

∗ Feasible for low-dimensional problems due to large computational costs
associated with high-dimensional cases.

∗ Regularity of X with respect to ξ is typically assumed.

2) Inference-Based Spectral Methods exploit a set of data {Xj}N
j=1:

π
(

c1, c2, . . .
∣∣∣{Xj}N

j=1

)
∝ L

(
{Xj}N

j=1

∣∣∣c1, c2, . . .
)

Prior

where π and L are the posterior and likelihood, respectively.
∗ No restrictions on the sampling scheme.

∗ Joint posterior for the ci ’s, i.e. non-deterministic expansion.

Forward Propagation: NISP approach

• Uncertain force-field parameters θ = {ε, σ, d}, with (ε, σ) defining
the Lennard-Jones potential. Stochastic reformulation of the
forward problem:

θ = f (ξ) (1)

• Let G = {ρ,D,H} be the set of uncertain observables. Assume:

Gk(ξ) ≈ Mk(ξ) =
P∑

l=0

c(k)
l Ψl(ξ), k = 1,2,3, (2)

where the overline denotes averaging over m replicas.
• NISP using Gauss quadrature with 7 points along each dimension.
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Spectrum of PC coefficients for ρ. 3D volume of M1(ξ).

Forward Propagation: Inference-Based approach

• Sampling technique combining nested Fejér grids and adaptive
selection of new points at high resolution levels (` ≥ 3).

• Choose ξi : Zk(ξi) ≥ λ, i = 1, . . . ,N`, where Zk represents the
normalized “error” for Mk between two successive levels.

−1 −0.5 0 0.5 1 −1

0

1
−1

−0.5

0

0.5

1

ξ2
ξ1

ξ 3

Full grid vs. reduced grid (λ = 0.40) for ρ. Diagnostics as a function of the approximation
level and tolerance: λ = 0, λ = 0.25, λ = 0.40.

Parameter Inference p

• Focus on a synthetic problem where presumed “true” values
{σ̂, ε̂, d̂} are used to generate a collection of noisy data, Qk , for
ρ (k = 1), D (k = 2) and H (k = 3), then Bayesian inference is
exploited to recover the “true” set of driving parameters.

• Exploit (1) and (2) to develop a PC surrogate-based Bayesian
inference approach (Marzouk et al. 2007) with likelihood:

L
(

Q1,Q2,Q3,
∣∣∣ {ξ1, ξ2, ξ3}

)
=

3∏
k=1

N∏
i=1

pγk

(
Q i

k −Mk(ξ1, ξ2, ξ3)
)
,

• Significant cost savings in evaluating the forward model for
different parameter values during Markov chain Monte Carlo.

• We assume {γk}3
k=1 ∼ N (0, σ̃2

k), with hyperparameters {σ̃2
k}3

k=1.
• N = 10 observations for each observable, i.e. a total of 30 data

points, and cubic PC expansions as surrogate model.

Single Observable

• Chain moves over the
isosurface extracted from the
surrogate model M1(ξ)
defined as ξ : M1(ξ) = Q1.

• Underdetermined problem.

• Large uncertainties in the
inferred values.

Three Observables

• Chain localizes at the
intersection of the isosurfaces
extracted from the surrogate
model and defined as
ξ : Mk(ξ) = Qk , k = 1,2,3.

• Surfaces of constant ρ, D and
H intersect at a point, yielding
a well-defined problem.

• True value is recovered with
good accuracy and small
uncertainty.
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