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Overview

Goal: find useful information in multi-variate data streams

A data stream is a semi-infinite sequence

Using only the most recent data, we want to identify

Concept drift in real time: for appropriate control of the system
Anomalies in real time: for corrective action
Periods of interesting behavior in near real time: for rapid analysis

Challenges

Data are high-dimensional, heterogeneous, sampled at different rates,
of low quality, massive, and with time-varying statistics

Real-time response is often required

“Anomalies” and “interesting events” are poorly defined

Need to minimize false positives

Chandrika Kamath (LLNL) SensorStreams 2 / 20



Overview

Motivation: incorporating wind energy into the power grid†

As the percentage of wind energy on the
grid increases, we need improved forecasts
of ramp events, where there is a large
change in the generation over a short time.
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Can we predict ramp events using data from the meteorological towers?

† WindSENSE for control room integration, https://computation.llnl.gov/casc/StarSapphire/WindSENSE.html
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Overview

Our end-to-end solution approach

Our recent focus is in three areas

Adaptive noise reduction

Fast subspace trackers for dimension reduction

Effects of spatial distribution of sensors on the predictive models
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Focus area 1: Adaptive noise reduction

Focus area 1: Adaptive noise reduction in data streams

For each data stream:

How do we select the parameters for a denoising algorithm?

How do we adapt the parameters with time?
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Focus area 1: Adaptive noise reduction

Find the optimal parameters using Monte Carlo SURE†

y = x + b

x , y ∈ RN

x : noise free signal

y : noisy data

b : zero mean, white Gaussian noise of variance σ2

Denoising algorithm : x̂ = fλ(y)

λ : set of parameters for the algorithm

Find parameters by estimating MSE using Stein’s Unbiased Risk Estimate

SURE: η(fλ(y)) =
1

N
‖y − fλ(y)‖2 − σ2 +

2σ2

N
divy{fλ(y)}

where divy{fλ(y)} =
N∑

k=1

∂fλk(y)

∂yk

To determine SURE, we need to estimate σ and divy{fλ(y)}.
† S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE: A black-box optimization of regularization parameters for general

denoising algorithms”, IEEE Trans. on Image Processing, Vol.17, No. 9, September 2008.
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Focus area 1: Adaptive noise reduction

Estimate divergence by probing the algorithm with noise

divy{fλ(y)} ≈ 1

ε2
b
′T (fλ(y + b

′
)− fλ(y))

where b
′
is a zero mean i.i.d. random vector with covariance ε2I , provided

that fλ has a well-defined second-order Taylor expansion.
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We can then vary λ, find the
corresponding SURE, and use
the λ corresponding to the
minimum SURE.

We are extending this idea of adaptivity to streaming data and improved
sampling of λ space.
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Focus area 2: Tracking the subspace

Focus area 2: Incremental dimension reduction

Find correlated features - useful when sensors spatially close

Windowing approach: Incremental and non-incremental versions
Forgetting factor approach

Random projections - useful for very high dimensions; with ensembles

Projection approximate subspace trackers - O(dk), based on a
forgetting factor, uses matrix inversion lemma (stability issues)

Incremental SVD - general approach†, a sliding window approach
(FAST)‡

† M. Brand, “Incremental singular value decomposition of uncertain data with missing values”, Proceedings, ECCV, pp.
707-720, 2002.

‡ E. C. Real, D. W. Tufts, and J. W. Cooley, “Two algorithms for fast approximate subspace tracking,” IEEE Transactions of

Signal Processing, Vol. 47, No. 7, July 1999.
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Focus area 2: Tracking the subspace

Fast Approximate Subspace Tracking (FAST)

Mold = Sold + Nold

=
[
m1 m2 . . . mc

]
(r×c)

Mold : matrix representing the data

Sold : reduced-rank signal matrix of rank k

Nold : full-rank noise matrix

Let the k orthonormal approximate left singular vectors of Mold be

Uold =
[
u1 u2 . . . uk

]
(r×k)

The error in reconstruction using only the largest k singular values/vectors:

εold = ‖Mold − UoldUT
oldMold‖2

F

When new data arrive, Mnew =
[
m2 m2 . . . m(c+1)

]
(r×c)

Goal: track the k singular values/vectors of the signal subspace as the
data transition from Mold to Mnew .
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Focus area 2: Tracking the subspace

Step 1: create a low-rank approximation A(r×c) to Mnew

Let Mold ≈ UoldUT
oldMold

= Uold

[
a1 a2 . . . ac

]
=

[
g1 g2 . . . gc

]
A ,

[
Uold q

] [
a2 . . . ac a(c+1)

0 . . . 0 b

]
=

[
Uold q

]
r×(k+1)

E(k+1)×c

where

a(c+1) = UT
oldm(c+1)

z = m(c+1) − Uolda(c+1)

b = ‖z‖

q =
z

b

Therefore, ‖Mnew − A‖2
F =

c∑
i=2

{
‖mi − gi‖2

}
+ ‖m(c+1) −m(c+1)‖2

≤ εold

New error is no greater than εold ; however, A is the same size as Mnew .
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Focus area 2: Tracking the subspace

Step 2: update Uold but work with a matrix smaller than A

A =
[
Uold q

]
r×(k+1)︸ ︷︷ ︸

(k+1) orthonormal columns

E(k+1)×c

Obtain E = UEΣEV T
E

Then, A =

([
Uold q

]
UE

)
ΣEV T

E

= UAΣAV T
A

where
UA =

[
Uold q

]
UE

ΣA = ΣE

VA = VE .

Or, we can obtain F(k+1)×(k+1) = EET

=
(
UEΣEV T

E

)(
VEΣEUT

E

)
= UEΣEΣEUT

E

= UFΣFV T
F .

By calculating the SVD of E or F we can obtain the left singular values
and vectors of A, which is an approximation to Mnew .
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Focus area 2: Tracking the subspace

Use the energy of the data to determine the number of
singular vectors to keep

The dimension of the signal subspace: the top k singular values/vectors
that explain most of the energy in the data

Energy in the data =
∑

i

σ2
i = ‖M‖2

F

Update the Frobenius norm from the previous iteration:

‖Mnew‖2
F = ‖Mold‖2

F − ‖m1‖2
2 + ‖m(c+1)‖2

2

Choose a percent of energy to keep. Use the singular values to either
increase the dimension by 1 or reduce by any amount if fewer singular
values/vectors can explain the energy in the new data.
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Focus area 3: Effects of spatial distribution of sensors

Focus area 3: the effects of spatial distribution of sensors

One approach to identifying “anomalies” such as ramp events:

determine if each time interval is part of a ramp event or not

describe each time interval by the sensor values

Time interval Sensor 1 . . . Sensor n Ramp
1 . . . . . . . . . 1
2 . . . . . . . . . 0

. . . . . . . . . . . . . . .
m . . . . . . . . . 1

build a predictive model based on this training set

Should the sensor values be at the same time instant as the output?

Some sensors may be “upstream” of an event - a lag correlation

The lag could vary with time
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Focus area 3: Effects of spatial distribution of sensors

Use lag correlations between the sensors and the output

Pearson’s coefficient, with a lag l :
Pn

t=l+1(xt−x̄)(yt−ȳ)
√Pn

t=l+1(xt−x̄)2
qPn−l

t=1(yt−ȳ)2

where

x̄ =
1

n − l

n∑
t=l+1

xt , ȳ =
1

n − l

n−l∑
t=1

yt

The two series are lag correlated if the correlation coefficient is higher
than a threshold

The lag is the value of l at the highest correlation coefficient

Can implement this using a windowing approach or a forgetting factor
approach by keeping the sufficient statistics

Can use historical data to calculate the lag, or calculate online using
fast methods†

† Y. Sakurai, S. Papadimitriou, and C. Faloutsos, “BRAID: Stream mining through group lag correlations,” Proceedings,
SIGMOD, pp 599-610, 2005.
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Experimental results

Experimental results using data from wind farms

Bonneville Power Administration balancing area - mid-Columbia Basin
Wind power generation available at 5 min intervals
Weather data available at 14 sites at 5 minute intervals

pressure, relative humidity, temperature, wind speed and direction,
peak wind speed and direction
several missing values

Data from Sept 2010: use 13 sites; exclude Forest Grove which has
missing values ⇒ 8640 instants, 91 variables
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Experimental results

Reducing number of streams by using correlations

Compared the windowing approach (incremental and non-incremental
versions) and the forgetting factor approach:

Implement using sufficient statistics

Results are similar, though forgetting factor approach gives results
closer to the non-incremental windowing approach

Windowing approach requires more memory to store the data in the
window

Results for the wind generation weather data:

Barometric pressure at all 13 locations are correlated.

Relative humidity at the 13 locations tends to be correlated.

Wind direction correlated to peak wind direction at the same location.

Wind speed correlated to peak wind speed at the same location.
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Experimental results

Application of the FAST algorithm

Consider a window of 100 and a threshold of 99% for the number of singular values to keep.

Possible correlation between number of singular values and generation?
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Experimental results

The lag correlations are harder to interpret

Lag correlations between wind speed and wind power generation using a window

of size 200 and a maximum lag of 100.

Values of -1 indicate a
negative correlation

The lag correlation changes
with time: how do we
interpret this?

Should negative correlations
be considered?

The lag changes with time.
How do we exploit this?
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Summary and future work

Summary and conclusions

We are investigating ways to pre-process multiple data streams, with
time varying statistics.

We are implementing a Monte-Carlo approach to adaptively identify
parameters for algorithms which reduce noise in the data.

A fast implementation of an incremental singular value decomposition
shows promise in identifying ramp events.

It is unclear if lag correlations will help in creating an appropriate
training data set.

Our focus is on techniques with low memory requirements; we use
single precision where adequate and double precision as needed.

Publications and presentations:
C. Kamath, ”Subspace tracking for dimension reduction in streaming data,” SIAM
Conference on Computational Science and Engineering, 2011.

C. Kamath, ”Dimension reduction for streaming data,” book chapter in Data Intensive
Computing: Architectures, Algorithms, and Applications, Ian Gorton and Deb Gracio,
editors. To be published by Cambridge University Press, 2011.
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Summary and future work

Plans for future work

Algorithm research:

apply the adaptive denoising prior to the dimension reduction

investigate how to process data streams with vastly different sampling
rates

understand what the changing singular values indicate about the data

investigate ways of creating the training data to build predictive
models to detect anomalies

Applications:

For the wind generation weather data: look at other months/years to
see if a seasonal or yearly variation

For the fusion data set from DIII-D: apply the ideas developed thus far

https://computation.llnl.gov/casc/StarSapphire/SensorStreams.html
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