
Robustness Via Conditional Value-at-Risk

 Loss function: Suppose L(x,Y) quantifies losses  

associated with decision vector x and random vector Y 

of uncertain parameters

 α-Value-at-Risk is the α-percentile of the distribution 

associated with the loss function which depends on x

 α-Conditional Value-at-Risk is the expectation of losses 

exceeding  α-VaR, the mean of the α tail distribution of 

L(x,Y), 

 A decision x that minimizes (or limits) α-CVaR of L(x,Y) 

minimizes (or limits) the average losses in the worst 1-α 

percentage of cases, and is considered a robust solution

 CVaR aggregates various losses under uncertainty into 

a single coherent measure of downside risk and is more 

conservative than VaR

 CVaR is convex in x if L(x,Y) is convex in x, which is 

desirable if CVaR is minimized or bounded from above, 

inside an optimization framework

 Explicit distribution for L(x,Y), explicit expression for 

CVaR, or computation of VaR are not needed, instead 

the following convex function can be used in place of 

CVaR:

 Since CVaR is an expectation, higher order moments 

can be used to quantify risk of losses under uncertainty 

for heavy tailed distributions
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Project Summary

 Objective: Develop models and algorithms for 

network flow, network design, and connectivity 

problems under uncertainty with the aim of 

obtaining robust solutions to the problems

 Uncertainty: Probabilistic node and arc failures 

modeled using uniform random graphs, random 

graphs of given expected degree sequence, and 

other models based on preferential attachment

 Robustness: By bounding or minimizing the 

conditional value-at-risk (CVaR) of an 

appropriately designed loss function, which 

quantifies losses as a function of decisions made 

under uncertainty

 Problems investigated: Minimum cost flows 

(including its special cases such as shortest paths, 

maximum flows, circulation), minimum spanning 

k-cores, minimum spanning r-robust k-clubs, and 

critical node detection

 Research tasks: Model development; theoretical 

study and algorithm design; large-scale 

implementation, testing and validation

Uncertainty in the network structure 

 Underlying network is assumed to be uncertain; 

We assume that an edge exists with  some 

probability quantified by random graph models of 

given expected degree sequence 

 Given a sequence w = (w1,...,wn), a random graph 

G(w) is defined where the probability of an edge 

between i, j ∈ V is given by:

 Erdos-Renyi random graph model G(n, p) is 

obtained from G(w) by choosing wi = np

 G(w) represents a power-law random graph 

model when sequence w obeys a power-law

 Power-law model is particularly interesting as 

network models of many natural and engineered 

complex systems have been empirically shown to 

exhibit power-law degree distributions  

 Models of preferential attachment, and duplication 

models describing power-law graphs will also be 

investigated 

The Minimum Spanning k-Core Problem

 The proposed idea to employ CVaR to obtain robust 

solutions to optimization problems can be illustrated using 

a novel network design problem studied in this project, 

based on the concept of k-cores introduced by Seidman

in 1983 for social network analysis

 One can add edges to the network (design it) so that it 

results in a k-core; Appropriate choice of parameter k can 

guarantee desired diameter and vertex connectivity; This 

leads to the minimum spanning k-core problem 

 The minimum spanning k-core problem is polynomial-time 

solvable using generalized graph matching techniques

 Suppose edges have probabilities of  survival/failure, 

hence a spanning k-core could cease being one if some 

edges we chose, failed; Consider the loss function,

which measures the cumulative degree deficiency under 

uncertainty where xe is a binary variable indicating if e is 

chosen to be included, and Ye is an indicator random 

variable for edge e surviving

 The CVaR constrained minimum spanning k-core problem 

under uncertainty can be formulated as:

 We expect to be able to develop a polynomial time 

separation algorithms since the original problem is 

polynomial time solvable; This is under investigation

 CVaR formulations of min cost flow problem and 

algorithms have been developed; In this case, the number 

of samples needed to estimate CVaR to desired accuracy 

is polynomial in the number of arcs 

 


