
Extending adaptive sparse grids for
stochastic collocation to hybrid architectures

Rick Archibald1(archibaldrk@ornl.gov), Ralf Deiterding1, Cory Hauck1, John Jakeman2, Dongbin Xiu2

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, 2Department of Mathematics, Purdue University

We are developing an adaptive sparse grid library tailored for emerg-
ing architectures that will allow the solution of very large stochastic
problems. In here, we give a brief overview of the problem at hand
and present first results for a GPU-based small cluster.

Stochastic collocation

In a stochastic simulation, one is interested in the relationship
between the input random variables Z and the outputs g of
the simulation state u = u(x, t;Z) that depends on Z and the
deterministic variables x and (possibly) time t. The mapping
from Z to g(u) can be given by

Z 7→ G(Z;x, t) , g(u(x, t;Z)). (1)

The key idea behind stochastic collocation (SC) is to select a
set of nodes in the random space and then conduct repetitive
deterministic simulation at each node.
Denoting with {G(Zi,j)

mi
j=1} the deterministic approximation

at discrete points, we can approximate the one-dimensional
component of the solution u over the range of Zi by

Gi[G] =
mi∑
j=1

G(Zi,j) · ψi,j(Zi) (2)

where ψi,j is the interpolating basis. Using tensor products,
the entire space can be constructed as

Gl = Gi1 ⊗ · · · ⊗ Gid. (3)

Yet, Eq. (3) suffers from the curse of dimensionality. It can
be delayed by employing sparse grids that are based on the
Smolyak construction

Gl =
∑

l−d+1≤|i|1≤l
(−1)l−|i|1 ·

 d− 1

l − |i|1

 · (Gi1 ⊗ · · · ⊗ Gid) . (4)

Sparse grids with adaptation

The types of basis functions ψi,j(ξ) are dependent on
the type of one-dimensional grids employed. Using
ψ(ξ) = max(1 − |ξ|, 0), we define a linear basis function

ψi,j(ξ) =



1 if i = 0,
max(1− 2ξ, 0) if i = 1 ∧ j = 0,
max(2ξ − 1, 0) if i = 1 ∧ j = 2,
ψ(2iξ − j) otherwise,

(5)
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and a modified linear basis function ψi,j(ξ)

=



1 if i = 0,
max(2− 2i+1ξ, 0) if i > 0 ∧ j = 1,

max(2i+1ξ − j + 1, 0)
if i > 0 ∧
j = 2i+1− 1,

ψ(2i+1ξ − j) otherwise.
(6)
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A higher-order basis function can be defined with Lagrange
polynomials with local support as

ψ
(p)
i,j (ξ) =


∏p
k=0

ξ−ξk
ξi,j−ξk if |ξ − ξi,j| < hi,

0 otherwise.
(7)

The 1D basis functions are used to form a set of d-dimensional
basis functions

ψi,j(Z) =
d∏
n=1

ψin,jn(Zn) . (8)

Utilizing these basis functions, an equivalent formulation to
the one by Smolyak, Eq. (4), is to construct an interpolant hi-
erarchically, that is

Gl,d(Z) =
∑
|i|1≤l

gi(Z), gi(Z) =
∑
j∈Bi

vi,j · ψi,j(Z) ∈ Wi , (9)

where
Bi = {jn = 1, . . . ,min, j odd, n = 1, . . . , d}, (10)

and vi,j is known as the hierarchical surplus.
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The sparse grid approach splits up the interpolant into contri-
butions from hierarchical difference spaces

Wi = span {ψi,j | j ∈ Bi} . (11)

Since the interpolation subspaces are constructed hierarchi-
cally, adaptation is provided naturally for sparse grids. Local
adaptation is implemented by manipulating the sets Bi. An
intrinsic refinement indicator is |vi,j|.

Parallelization

A coefficient transformation and interpolation code for non-
adapted sparse grids was implemented as a first prototype.
Hybrid parallelization approach (MPI plus CUDA):
1. Distribute entire hierarchical subgrids Wi to nodes and

thread blocks
2. Allow multiple threads to evaluate vi,j according to Eq. (9)

for individual points
3. Communicate G(Zi,j) in suitable data chunks successively

to all nodes and thread blocks
Configuration studied:
•Basis function (7) with Chebychev node distribution

(bounded case)
•Dimension d = 14,

levels l = 6

•38,760 subgrids Wi

and 1,009,905 grid
points used in total
•Testbed: 16-node

cluster at OLCF, each
node has one 6-core
Opteron 2435 CPU
plus one NVIDIA
Fermi GPU C2050

12CPU vs 6CPU/1GPU 24CPU vs 12CPU/2GPU 48CPU vs 24CPU/4GPU 96CPU vs 48CPU/8GPU
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Sparse Grid Computational Times (d=14, n=6, nsubgrid=38760)

 

 

Multicore Nodes
Hybrid Nodes

Strong scaling of sparse grid construction on
the hybrid test cluster. MPI only vs. hybrid
MPI/CUDA parallelization.

Approach for hybrid parallelization of developed prototype
implementation of serial adaptive sparse grid library:
•Use geometric decomposition to ensure always strictly local

evaluation of Eq. (9)
•Distribute geometry regions to nodes and thread blocks

•Again, use multiple threads to evaluate surpluses vi,j and
interpolate with Eq. (9) at individual points
•Use locality-preserving distribution algorithm. Suggested:

generalized d-dimensional space-filling curve (SFC)
+ Cyclical communication of G(Zi,j) and intermediate results

in (9a) to all nodes is elegantly avoided
+ Serial implementation based on hash tables, including all

approximation rules, can be effectively reused
- Partitioning algorithm and synchronization are complex to
implement

- Determination of hierarchical points with an influence on
local subregions is non-trivial
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2D unbounded adapted
sparse grid using 5 sub-
space levels. Left: each
point indexed with sub-
space level used. Right:
domains of the respec-
tive highest level and a
generalized SFC used for
decomposition.

Domain decomposition of above adaptive sparse grid to four nodes and/or thread
blocks based on a generalized SFC.

Application

We demonstrate how
uncertainty error esti-
mates can be derived
from sparse grids to
characterize parameter
distributions in the com-
munity climate earth
systems model (CESM).

Left: Process for UQ in the CESM. Right: UQ
error estimates of CESM statistics.

Specifically, the Newton form of the residual for a mth order
polynomial interpolation has an equivalent form based on the
local polynomial annihilation method,

f (yk)− pm(yk) = f [y0, . . . , yk, . . . , ym+1](yk − y0) . . . (yk − ym+1)

= ckqmLmf (yk) (12)

This relationship allows the reconstruct of high-order global
error estimator by re-purposing the edge detector which op-
erates locally at a relatively small computational cost.
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