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Abstract

We present some recent developments in our work on high-order accurate methods for fluid and
solid dynamics on unstructured meshes. While it is clear that DG and related methods are getting
sufficiently mature to handle realistic problems, their computational cost is still at least a magnitude
higher than low-order methods or high-order finite difference methods on similar grids. For some
problems, explicit time-stepping or matrix-free implicit methods can be employed, but for many
real-world problems and meshes full Jacobian matrices are required for the solvers to be efficient.
Here, nodal-based Galerkin methods have a fundamental disadvantage in that they connect all
unknowns inside an element, as well as all neighboring face nodes, even for first-order derivatives.
This leads to a stencil size that scales like p” for polynomial degrees p in D spatial dimensions. As
a contrast, a standard finite difference method only involves nodes along neighboring lines, which
gives a stencil size proportional to Dp, which can be magnitudes smaller ever for moderate values
of p in 3-D.

In an effort to extend this stencil-size reduction to unstructured meshes, we propose applying
the Galerkin formulation only for the 1-D problems that arise along each coordinate direction. We
show how this can be done for fully unstructured meshes of hexahedra, and that the resulting
scheme is drastically sparser than a corresponding DG scheme. For the second-order terms we
use an LDG-inspired approach with consistent switches along all global lines, and we use modified
iterative solvers that preserve most of the sparsity. In our numerical examples, we demonstrate
optimal convergence for several problems including Poisson, convection, and the Euler equations.
We show that super-convergence can be obtained if the systems are solved in split form, for an
additional order of accuracy in the gradients. We study various time integrators for the compressible
Navier-Stokes equations, in particular Implicit-Explicit Runge-Kutta solvers that reduce the size
of the implicit problems, which we solve using a matrix-based Quasi-Newton method. This is
appropriate in particular for time-accurate integration of LES-type problems, where a large part of
the mesh is often uniform and a small number of boundary elements restrict the timestep for fully
explicit solvers.



