Towards Certificates for Integer Programming Computations
Higher-Confidence Integer Programming

Robert Carr, Harvey Greenberg, Ojas Parekh, Cynthia Phillips (speaker)
Carr, Parkeh, and Phillips:
Sandia National Laboratories
P.O. Box 5800, Albuquerque, NM 87185
Greenberg:
Colorado University, Denver

Abstract

Mixed-integer linear programming (MILP) is a general technology for solving combinatorial
optimization problems exactly. MILP is the optimization of a linear function subject to linear and
integrality constraints. MILPs naturally represent resource allocation problems. Thus they are a
workhorse technology for decision support, such as scheduling, logistics, manufacturing optimiza-
tion, and sensor placement, or for the study of natural systems such as bioinformatics. Recently
we have been using MILP computations for scheduling quantum error correction codes for quan-
tum computers, for planning the evolution of the US weapons stockpile, and for selecting sensor
locations within large municipal water networks.

Although integer programming is an NP-complete problem, one can frequently compute (near)
optimal solutions to specific instances using intelligent search. If the solution will be used to support
a high-consequence, expensive, and irrevocable decision, we would like provable confidence in the
result of a specific computation. A MILP solution could be incorrect due to a program error or due
to properties of inexact arithmetic during computations.

We would like to compute a certificate for an integer programming computation. This is infor-
mation that allows an independent program to check that the output is correct, preferably far faster
than the time required to compute the solution. The canonical example, which we will explain,
is the certificate for a linear program (LP). The certificate is the solution to the dual problem.
Although solving an LP can take a large amount of time, checking a certificate requires one matrix
vector multiplication and one dot product.

A “brute force” certificate for an integer program branch-and-bound computation must prove
that each branching operation (subdivision of the feasible region), added cut (constraint), and
fathoming operation (removable of a region) is correct. We will discuss what this entails in the
context of PICO, our massively parallel integer programming solver. We will give a certificate for
general Gomory cuts and discuss ways to prove the correctness of a general cut, which is equivalent
to proving a region has no integer solutions. The latter problem is NP-hard in general, but may be
easier for the polytopes “cut off” during a integer-programming computation. We will discuss solver
tolerances and exact arithmetic for linear programs. Time permitting, we will discuss methods of
computational algebra, notably the Grobner basis test-set, which does not involve direct validation
of search steps.

This presentation will report on specific avenues we have explored and current results, including
some that appear to be dead-ends.



