Performance Analysis of GYRO
A Tool Evaluation

P Worley, P Roth Oak Ridge National Laboratory

J Candy General Atomics

H Shan Lawrence Berkeley National Laboratory
G Mahinthakumar, S Sreepathi North Carolina State University

L Carrington, T Kaiser, A Snavely San Diego Supercomputing Center

D Reed, Y Zhang University of North Carolina

K Huck, A Malony, S Shende University of Oregon

S Moore, F Wolf University of Tennessee

2005 SciDAC Conference
June 26-30, 2005

San Francisco, California

o ¢ R A = Offi f
. SCI‘.D\.A.C 1 ZO}’ 1 Sc:'gﬁcoe

“©%% Scientific Discovery through Advanced Computing = DEPARTMENT OF ENERE X

Acknowledgements

This research was sponsored by the Office of Mathematical, Information, and Computational
Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-FG03-95ER54309
with General Atomics, No. DE-FC02-04ER25612 with the University of North Carolina, No. DE-
ACO03-76SF00098 and No. DE-FC02-01ER25491 with the University of California, No. DE-FG02-
05ER23680 and No. DE-FG03-01ER25501 with the University of Oregon, No. DE-FC02-
01ER25490 with the University of Tennessee, and No. DE-AC05-000R22725 with UT-Battelle,
LLC. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow others to do so, for U.S. Government
purposes.

i . = Offi f
/ ScilDAC 2 Z@ Sc:'gﬁcoe

Scientific Discovery through Advanced Computing U.S. DEPARTMENT OF ENEROY

Problem

* Performance analysis and optimization are not trivial, and are only getting harder as application
codes become more complex, as the problem sizes and number of processors used increase, as
processor, memory, and network technologies evolve, etc.

* Performance tools have a reputation for being difficult to learn to use, especially for the infrequent
user. However, this must be compared with the difficulty and limitations of the alternative: manual
methods.

* This study looks at what performance analyses can be performed without modern tools, and at what
cost. We then briefly describe a number of tools that address some of the deficiencies of the manual
approach.

< . ~ Offi f
BB A C : 1o, ice

‘ s l ﬁnc Dl I‘ n H I I c p“ll ! U.S. DEPARTMENT OF ENERGY

Approach

The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO was examined on five high
performance computing systems:

* Cray X1 at Oak Ridge National Laboratory (ORNL): 128 4-processor X1 SMP nodes and a Cray
interconnect. Each processor is a Multi-Streaming Processor (MSP) comprised of 8 32-stage vector
units running at 800 MHz and 4 scalar units running at 400 MHz.

* IBM p690 cluster at ORNL: 27 32-processor p690 SMP nodes and an HPS interconnect. Each node
has two 2-link network adapters. Each processor is a 1.3 GHz POWER4.

« IBM SP at the National Energy Research Scientific Computing Center (NERSC): 416 16-processor
Nighthawk II SMP nodes and an SP Switch2 interconnect. Each node has two network adapter
cards. Each processor is a 375 MHz POWER3-II.

* SGI Altix at ORNL: 128 2-processor SMP nodes and a NUMALIlink interconnect. Each processor is
a 1.5 GHz Intel Itanium 2. The Altix is a Non-Uniform Memory Access (NUMA) cache coherent
shared memory system.

* TeraGrid Linux cluster at the National Center for Supercomputing Applications (NCSA):} 631 2-
processor SMP nodes and a Myrinet 2000 interconnect. Each processor is a 1.5 GHz Itanium 2.

using the Waltz standard case benchmark, which we refer to as B1-std. The B1-std grid is
16 x 140 x 8 x 8 x 20, which is the same resolution used in many production runs. The benchmark is run
for 500 timesteps.

\ C‘; } \A.C) 26“;‘ Office of

G d Science
"> Scientific Discovery through Advanced Computing ke il

Experimental Design

First, a manual “baseline” approach was taken, using custom PERL and GNUPLOT scripts to analyze the
output of:

* wallclock timers. GYRO comes with embedded wallclock timers and both cumulative and sampled
runtime data are collected automatically. The timers surround events that characterize the developers'
view of the code.

* floating point operation counts. We instrumented the code with calls to HPMLIB f hpmstart and
f hpmstop routines at the same locations as the embedded timers. Runs on the p690 cluster were used
to collect floating point operation counts for each user event for a number of different processor
counts. These data were combined with timing data to determine computational rates and to examine
operation count scaling.

« event traces. We instrumented the code with calls to the MPICL traceevent routine at the same
locations as the embedded timers. Runs on the X1 and the p690 cluster were used to collect trace data
for both MPI calls and the user-defined events that were used to determine event-specific
communication overhead. Visualizations using ParaGraph were used to look for performance
bottlenecks.

After the baseline studies were complete, we next analyzed the performance of GYRO using a number of

tools developed by or used within the Performance Evaluation Research Center (PERC) project:

PerfDMF, IPM, TAU, SvPablo, KOJAK, PMaC, identifying ways in which the tools simplified,

accelerated or extended the manual approach.

= R Offi f
) SC)‘LD\A-C 5 26‘«; Sc:'gﬁcoe

o Scientific Di t1 n Ad iC pu" ‘ S. DEPARTMENT OF ENERG Y

Analyses for which tools are not needed

GYRO performance for B1-std on the Cray X1

* Optimization over small search spaces. Many
codes have embedded tuning options that allow the
algorithms or implementation to be modified at
compile- or runtime. The optimal choice is often a
function of the computer system, problem
specification, or runtime configuration (e.g., number
of processors). If the search space is small, it is
simplest to determine the optimum by measuring the
performance of each option directly. Example here
is the choice of nonlinear evaluation method to use
in GYRO and the choice of filesystem to run out of
on the ORNL Cray X1.

* Benchmarking. Benchmark timings should
represent what would be observed in a production
run, i.e., without performance tools.

While both of these analyses require only whole program
timings, to observe scaling behavior requires many runs.
For these analyses over 175 experiments were run, on
processor counts up to 1024, and the number of
experiments on any given system was constrained by
resource availability. We were not able to collect all of
the data that we would have liked on any of the target
systems.

“Scientific Discovery through Advanced Computing

Timesteps per Second

Timesteps per Second

12

10

12

10

/%%5

scratch file system

direct nonlinear eval. —_——
FFT-based nonlinear eval. —_——
dfs file system
direct nonlinear eval. —_—
FFT-Pased ngnlinear leval. ——
50 100 150 200 250 300 350 400 450
Processors
GYRO performance for B1-std
dire& nonlinear evai.
Cray X1 —
)\/ TeraGrid cluster
/\/ IBM p690 cluster —
SGI Altix ——
/'/ IBM SP —
//
/ j_./. i
600 800 1000
Processors
’b“)“ Office of
.g, -4 Science

U.S. DEPARTMENT OF ENERGY

Analyses for which tools are not necessary

User Event Profiling. Profiling is a standard first
step in performance analysis, to determine which
events are most important to optimize. Examining
scaling as well can help identify performance
problems. From the benchmark experiments, Altix
performance is not scaling as well as on the other
platforms. A plot of the percentage of runtime per
phase on the Altix indicates that the Coll tr phase
(dominated by calls to MPI_Alltoall) is the probable
source of the poor scaling. As the timer data plotted
here is for process 0 only, this could also denote a
load imbalance. However, the other systems do not
show similar catastrophic communication
performance. Note that the embedded timers define
the events that the developer expects to characterize
performance. An incorrect choice can provide
misleading information, and a good choice on one
platform may not be a good choice on another.

€ SciDAC

Scientific Discovery through Advanced Computing

Fraction of Total Runtime

Transpose Time/ Total Runtime

GYRO phases for B1-std on the SGI Altix

/0
extras

field

0.8
lin_RHS

0.6
Coll_tr

0.4
Coll

0.2 NL_tr

NL
0

20 40 60 80 100 120 140 160 180
Processors

GYRO communication fraction for B1-std

0.7

0.6 , e
0.4 /// v
03
APV
0.2 ~ direct nonlinear eval. -
../(SGI Altix —_—
IBM SP ——
0.1 TeraGrid .
IBM p690 cluster —_—
0 Cray X1 ——
0 200 400 600 800 1000

Processors

PSS Office of
.g,, | Science

U.S. DEPARTMENT OF ENERGY

Analyses for which tools are not necessary

Floating Point Operation Count for B1-std

* Computational cost and rate metrics. Operation 25000
counts can be used to understand computational

complexity and to compute computation rates. § 20000 extras
Aggregating the floating point operation counts on z field
the p690 cluster illustrates that the work required by g lin_ RHS
the parallel implementation of GYRO is sensitive to % 10000 o
the processor count, and that some scaling issues are g
unavoidable (when using this implementation). Using E 5000 N
the operation counts to approximate computational
rates indicates that rates on all systems are relatively O 0 1% 20 20 30 3% 0 450 500
insensitive to processor count (not shown here). The Processors
average rates are listed in the table. From these data,
the Coll phase is a candidate for additional Blostd Compmﬁion gj{is «fii’}gee) o
vectorization work on the X1, and the difference Cray X1 7 39 39 16
between computational rates on the Altix and IBM p690 cluster | 1.3 | .34 71 35
TeraGrid, which use the same processor, need to be IBM SP 691 .20 26 14

. SGI Altix 2.1 | .68 .75 37
looked at more closely. Note that the operation counts TeraCrid 16| 47 57 37

were collected in separate experiments, and on only
one platform, and combined with the timing data in a
postprocessing step. While sufficient here, other
analyses would requiring collecting operation counts
on each system.

Table 1: Computation rates for user-defined events on process 0

Z e - Offi f
ESEDAC . (DYt

> E I mnl 3 T II 1 I l I 3 ’ c B ”II - : U.S. DEPARTMENT OF ENERGY

Analyses for which tools are not necessary

Communication cost and rate metrics. MPI
command profiles and traces can be used to
understand communication complexity and to
compute communication rates. Example data are not
shown here, but the advantages, costs, and drawbacks
are similar to those for collecting data on operation
counts, excepting that trace data is much higher
volume. For example, in these (limited) studies we
collected over 700MB of trace data (compressed).

Visualization. MPI-aware performance visualization
tools have been around for over 10 years. We include
one of the original ones, ParaGraph, in the baseline
studies to help identify whether more modern tools
have improved on this basic functionality. The
combination of the utilization graph and the task
Gannt chart indicate that load imbalance contributes
to some of the communication overhead, but is not
the dominant source. These data are for 192
processors on the X1, so do not necessarily indicate
anything about performance on, for example, the
Altix.

It is in the collection, analysis, and presentation of
multiple related measurements where manual methods
become onerous, especially when requiring frequent
additional experiments to fill “holes” in the

experimental database.

C 110
o e b S W

OO0

[X| Utilization Count

192

UTILIZATION COUNT

N
176 U
160 2
144 E
R
128
0
112 F
£ P
80 g
64 C
E
43 S
s
32 0
16 g
¥ 3343 TIME 3855
1]
BUSY OVERHERD IDLE y
é
OO0 [X| Task Gantt Chart
TASK GANTT CHART .
176 R
0
160 c
144 E
128 s
s
112 0
96 R
30
N
64 u
43 n
32 B
E
16 R
¥ 3343 TIME 3855
poouaouoaooonononooCagOOOODONAOODODODOmODOODOENDDODONAORODODONDADD
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 65

r@' Office of
~d Science

U.S. DEPARTMENT OF ENERGY

Analyses for which tools are important

There are a number of analyses where the manual approach we took was either too expensive or was only able to
approximate the analysis indirectly, including:

» Identifying critical paths. Critical paths indicate potential performance bottlenecks. Trace analyzers provide one
approach to this, but are best linked to more than just timing data to provide context and guidance.

* Global view analysis. Global view analysis allows direct examination of load imbalances, system bottlenecks, and
the impact of system noise. While user and MPI event visualizations are useful, they require the user to recognize and
interpret the data correctly.

* Detailed performance debugging. Debugging is an iterative process of identifying and tracking performance
problems down to individual routines and lines of code. When performed by hand, detailed performance debugging is
time consuming and fraught with problems due to instrumentation perturbation and global effects (e.g., load
imbalances) masquerading as local performance problems.

P PN : ~ Offi f
4 SCﬂDAE 10 262. Sc:’gﬁcoe

Y4 h Ad iC puti U.S. DEPARTMENT OF ENERGY

izati i *Selection of the best version
Visualization & analysis - ' ' l (7 Feedback
- | *Refinement of existing
m - optimization strategies

*Creation of new
optimization strategies

*Scalability analysis

Operations to _
compare, integrate, Unified

and summarize performance

different experiments data model

Automatic collection of
performance
data

Automatic
transformation
of event
traces into
high-level
profile

1

T 5/ PP==" Office of
Ve F 4 W — = ' -
1\ J.Lf“i ¥ ‘Lt.ﬁlt‘*‘i ,1_ I‘ " u.s.nsﬂARrM:iS:se':a?e
'*H‘lllxlluluxﬂrfrf‘ﬁllﬂl.l ll!lxllqu]ll;rrlll.

PerfDMF

PerfDMF (Performance Data Management Framework) e66 : Beiative ficleney o Evers

. . Relative Efficiency by Event for gyro.B1-std:B1-std-nl2.cheetah.noaffnosng
is a database schema and toolkit layered on top of an SQL ras

database for organizing multi-experiment profile data. 030

A data mining framework called PerfExplorer is also built on o0

top of PerfDMF. Loading the manually collected baseline oss

data into PerfDMF facilitates subsequent multi-experiment ;M

analyses. For example, the PerfExplorer user interface was 040

used to quickly and easily generate all of the manually- m

generated plots described previously. It was also used to 02:

examine other performance issues, .e.g, (1) relative efficiency oas

for different simulation timesteps, (2) relative efficiency for B

® Coll ®Coll_tr 41/0 NL NL_tr ¥ extras field lin_RHS

different user events, and (3) relative efficiency for a
communication event for different platforms.

e 06 Relative Efficiency by Event e 06 Relative Efficiency for Event
Relative Efficiency by Phase for gyro.B1-std:B1-std-nl2.cheetah.affsng Relative Efficiency for Coll_tr
1.05
1.00 11
0.95
0.90 1.0
0.85
0.80 0.9
0.75 0.8
0.70
0.65 0.7
0.60 o
S oss 208
3@z = 05
0.45
0.40 0.4
0.35
0.30 0.3
0.25
0.20 0.2
0.15 01
0.10
0.05 00 . - . - - - - . - - . - . . . H . H H H H
0.00 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 Number of Processors
Number of Processors
W B1-std-nl2.cheetah.noaffnosng ® B1-std-nl2.phoenx.0x002 4 B1-std-nl2.phoenix.0x002scr B1-std.cheetah.affnosng
‘I Iteration 0 @ lteration 1 4 lteration 2 Iteration 3 Iteration 4 ¥ Iteration 5 Iteration 6 Iteration 7 ¥ lteration 8 < Iteration ¢ , B1-sld.seaborg ¥ B1i-sid.ig

W= Office of
.CZA Science

U.S. DEPARTMENT OF ENERGY

12

i 100 =\
IPM g
= 20+
:’ 70
E o)
IPM (Integrated Performance Monitor) is a lightweight B
profiling tool for parallel applications, automatically i zg
reporting runtime, communication time, computation rate, 33 o0
and memory requirements, both aggregate and per process, as O —,
well as detailed profile data on MPI routine calls and data
from system-supported hardware performance counters. Processor Rank

Running IPM does not require any source code modification
unless the user wants to define special regions to monitor, in
which case MPI_ Pcontrol is used to define the starting and
ending points of the region. While this is the same
requirement as the manual approaches described previously,

M 1PI_Alltoall
M 1PI_Allreduce

. . . B MPI_Bcast
IPM automatically collects multiple metrics and plots both HPI_Reduce
raw and derived metrics. The examples here show (1) B 1PI_Send

MPI_Comm_tank.

percentage of maximum computational rate as a function of
MPI_Comm_size

processor, (2) percentage of communication time spent in

B MPI_Recy
each MPI command, and (3) percentage of total time spent in
various phases as a function of processor count. While not
designed for multi-experiment analyses, [PM quickly 100%
. 90% 1 1 1 H H H —
generates a number of common views of performance for a e O 1 e []] [| BLocal Comp
given run. = 0% HHH R | H H | ©MPIL_Alreduce
£ 50%H H H H — HHHF
F oot H HH . - H FH | =MPLAltoal-2
30% H F-S1 Sl =
0% H = L H H L[| oM Altoall-1
10% Th=—1 1 1 1 1 [il n
0% T T T T T T T T T T T T
CHh T PEHpLF PSP
B1-std B3-gtc

B o 4 PP=5" Office of
SCLD.A.LA 13 _QO? Science

Scientific Discovery through Advanced Computing U DA N Nt iy

Performance
data correlating to
source code

Automatic
instrumentation

Source File: [|/: i vingz/g .0.0.per i _SSP_322.fa0 v Performance Metric Selection Dialog

44 h = h_0-0.5*dt*RHSI_1
. e Call Statistics
s > a7 call get_kinetic advance
48 RHSI_2 = (h{~ Specific Metric [Count
] - & HW Statistics by Lir s
[~ > 2 e it MFLOPS. [” Inclusive Duration
§§ h = h_O+dt= 329.7925L1 - get_rhs L
54 Loop Statistics
55 RHSI_3 = h —
> 56 call get_kil Dismiss Help
57 RHSI_3 - (h| I Count

™ Inclusive Duration

HS

Easy
bottleneck

RHSE_.

Software &

h - h_D+dt*0.5* (RHSE_2+RHSE_3+RHST_2+RHST
if (.not.(neo_method == 3 .and. boundary_

HW Statistics by Line

= P A [Floating Point Instructions hardware
discovery “ Instrument/Clear Line < View Lit I7 Cycles o e
I MFLOPS statistics

Task Number Count Seconds Exclusive Seconds
515612 515612 | 1450567221400
62.3427 62.3427 | 1448818516400

1500 602764 602764 | 12480786923.0001

FP Instructions

Effciency

1500 44,8680 448680 | 12463244337.0001

1500 06683 405693 | _12480767363.0001
1500 73,0863 730863 | 12483197665.0001
61531 46,1531 | _124807978040001
52.9994 529994 | 12483220195.0001
1500 257661 457661 | 12480767263.0001
1500 04777 s0a777 | 12363217028.000¢ - .
1500 72547 47,2547 | 124807072300001 100 150

535272 535272 | 12483117242.0001 Processor Count
00720 400720 | 12480712536.0001
724724 724724 | 124831322240001 Problem Size: Fixed < Scaled
1500 55,1203 55.1203 | 12480702627.0000

Line level
scalability
analysis

Load imbalance
detection

) Office of
>4 Science

U.S. DEPARTMENT OF ENERGY

SvPablo

SvPablo is a graphical environment for
instrumenting application source code and
browsing dynamic performance data.

It is a sophisticated tool supporting many
performance analyses that are difficult to do
manually. For example, SvPablo can calculate
computation and communication rates while
collecting profile data, not requiring the merge
and postprocessing of multiple experiments or

of trace data. The examples here show the

output of a performance debugging session,
attempting to identify and characterize the
performance of performance sensitive routines
for further investigation, and analyses of multi-
experiment results at a subroutine and at a loop
level.

~ Scientific Discovery through Advanced Computing

Efficiency

l:’J tg-login.ncsa.teragrid.org - Teragrid - SSH Secure Shell

A x|

File Edit View Window Help
HEgh i 2B H I8 % &8

& Quick Connect] Profiles

16000

2.009E+09
1.09E+09

Connected to tg-ogin.ncsa. teragrid.org

Efficiency for the Function Call get_poisson_solution

SSH2 - aes128-chc - hmac-md5 -none | 142x42 A

Efficiency for the Loop in non_linear_advance

1.2
1.2
—— IBM p690 —— IBM p690
1.0 - —— IBM SP 104 —— IBM SP
' —— SGI Altix SGI Altix
0.8 4

0.8 -

(8]

&
0.6 4 § 0.6

&

w
0.4 044
02 0.2
0.0 ; . : ; : 0.0 . : T . T

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Processor Number Processor Number
[,-;,., Office of
{ ¢ s
;- Science

15

S. DEPARTMENT OF ENERG ¥

TAU

TAU (Tuning and Analysis Utilities) is
a framework and toolkit for
performance instrumentation,
measurement, and analysis of parallel

applications. Like SvPablo, TAU is a

sophisticated tool supporting many
performance analyses that are difficult
to do manually. PerfDMF is also a
component of TAU, and TAU analysis
routines can be used to analyze data
collected with other tools. The first
example here is another performance
debugging application, identifying
where time is spent in the code. The
second example is a view of the
imbalance in the time spent in the
MPI_Alltoall, representing either
computational load imbalances or
hotspots in the communication logic or
network. While this latter task could be
achieved by a manual analysis of a
trace file, TAU supports many
common analyses and a mechanism for
defining and saving custom analyses.

BERr 9

'é' Applications Places Desktop %(B A

File Options Windows Help

Metric Name: Time
alue Type: exclusive

23.432% [BLEND._F
13.254%] GET_FIELD_INTERPOLATION
11142 I MPIInit)
10.761% N £ END_F3
7.375% [MPI_Bcast()
7.162% NN 1P _Alitoall)
7.067% [MPI_Allreduce()
4.364% [DO_NLFAST _P
2.712% I UMZ25U
2.186% [oRB_S
1.911% [CJumzasL
1.619% [B_NORM
1.221% [TIMESTEP_SSP_322
1.19% [GET _KINETIC_ADYANCE
1.169% [l GET _DELTA_HE
0.452% I GET_HE
0.414% | GET_FIELD_BXPLICIT
0.408% [B_LBOUNCE_PT
0.26% | BESEIO
0.208% | MPI_Reduce(
0.203% | FSSUB
0.179% | GYRO_BDOUBLEAYE
0.174% UMZ2F2
0.166% MPI_Comm_split
0.165% DO_DTAU
0.118% | CALCIO
0.114% | MAKE_POISSON_BLEND
0.071% | BESJO
0.051% | GYRO_AVE
0.049% | CATCH_BLOWUP
0.042% | RSSUB
0.039% | ORB_TAU_TRAPPED
0.039% | ORB_TAU_PASSING
0.036% | GET_ERROR
0.03% | DO_FULLADYANCE
0.03% CALJYO
0.025% | UMZ252
0.019% | GET_FIELD_PLOT
0.016% | GET_NONLINEAR_FLUX_TRAPPED
0.013% MAKE_MAXWELL_MATRIX
0.012% UMZ2FG
0.008% ORB_FLUXINT
0.008% | GET_NONLINEAR_ADYANCE
0.008% | ORB_S2LAMBDA
0.008% MAKE_THETA_OPERATORS
0.007% | MAKE_BLEND_ARRAYS
0.007% | UMZ2CO
0.006% | MAKE_IMPLICIT_ADYECT
0.005% | PROC_TIME
0.005% UMZ250
0.005% | MAKE_POISSON_MATRIX

(@] [o | @ Tem..|

16

" Scientific Discovery through Advanced Computing

File Options Windows Help

Metric Name: Time
MName: MPI_Alltoall()
alue Type: exclusive

9.2065 I -
7.611% I 1! 0,0,0
7.608% N 1, 10,0

6.726% I 1, ! 2,0,0

6.942% NN .. 5,0,0
7.005% N ! 6,0,0
6.605% N ..t 7,0,0
7.191y% I 1, . S,0,0
7.256% N .. o,0,0
6.328% NN 1, 10,0,0
6.649% NN 1.t 11,0,0
6.912% N 1, 12,0,0
6.461% N 1, 13,0,0
6.002% NN 1, 14,0,0
5.572% N 1, .t 15,0,0
7.3945 I ', 16,0,0
7.035% I ..t 17,0,0
7.018% N .t 18,0,0
6.767% N 1, .t 19,0,0
7.642% N 1, 20,0,0

7.164% I 1, 23,0,0

7.408% I ., 24,0,0
7.297% I ! 25,0,0

6.73% I 1, ! 26,0,0

6.249% NN ", 27,0,0

6.425% NN 1, ! 28,0,0

6.725% I 1, 29,0,0

6.7 14% I 1, ! 20,0,0

7.074% N 1, .t 31,0,0
10.258% I ! 32,0,0
9.186% I 1, ' 32,0,0
8.645% NN 1t 24,0,0
9.267% NN 1, 35,0,0
9.118% N 1, .t 36,0,0
9.03% N ., 37,0,0
9.13% [1, ! 35,0,0
8.652% NN 1, 3 9,0,0
9.245% I ., 40,0,0
9.451% N .t 41,0,0
7.7413 I 1, c,t 42,0,0

7.113% I 1, ., 47,0,0
8.829% I ., 45,0,0

l [edu-uoreg... I & Terminal |

=" Office of
.gr, Z Science

U.S. DEPARTMENT OF ENERGY

KOJAK

KOJAK 1is an automatic trace-analysis toolkit for parallel
applications using MPI and/or OpenMP, generating event
traces during execution and searching them offline for
execution patterns indicating inefficient performance
behavior. By comparing event traces for different runs,
KOJAK 1identified particular MPI_AlltoAll calls as

the location of the Altix performance problem, though it
has not yet led to a resolution. Comparative analysis of

trace files is clearly not a manual activity.

: gyro-Bl-std-192-RAM.cube

waiting

processes

waiting
B S—

waiting

time:

= [50.3 Execution

0.6 RTRANSP_INIT

File View Help
Performance Metrics Call Tree System Tree
=[] 0.0 Time =[] 0.0 DO_FULLADVANCE 21 = [0.0 saGI Altix =

=[] 0.0 ram1

= [01 MPI = [0.0 RTRANSP_DO [0.0 Process 0
=[] 0.0 Communication & 8.4 MPI_aAlitoall [0.0 Process 1
= [27.7 Collective [0.3 FTRANSP_INIT [0.0 Process 2
[] 0.0 Early Reduce = [J 0.0 FTRANSP_DO [0.0 Process 3
0.6 Late Broadcast [0.0 Process 4
[0.1 DO_COLLISION_CORRECT [0.0 Process 5
[0oPzP = [0.0 TIMESTEP_SSP_322 [0.0 Process 6
[Jooio 1.4 GET_KINETIC_ADVANCE [0.0 Process 7
[J 0.0 Synchronization =} [] 0.0 GET_NONLINEAR_ADVANCE [0.0 Process &
= [] 0.0 FSSUB [0.0 Process 9
4.5 MPI_alltoall = [[] 0.0 Process 10 0
FIIIII IIFIIIIIIIII] ’ | I |7Dlllllllfllﬁlllll AENRNNRNERERREREND
’ [10 20 30 40 50 60 70 a0 90 100
L192x1 J
p— Z” 5 Office of
S@LD’A@ 17 > 4 Science

~ Scientific Discovery through Advanced Computing

U.S. DEPARTMENT OF ENERGY

PMaC Scenario | Description

Case I | Reduced interconnect latency by 2
Case 2 | Increased interconnect bandwidth (BW)

PMacC (Performance Modeling and Characterization) is a by 2

suite of tools for characterizing system and application Case 3 | Increased FLOP rate by 2

performance and for using these characterizations to build Case4 | Increased L1 BW by 2

performance models suitable for performance optimization Case 5 | Increased L1 and L2 BWs by 2

and extrapolation. The performance questions mentioned Case 6 | Increased L1, L2, and L3 BWs by 2
previously were all concerned with understanding and Case 7a | Increased L1, L2, L3, and main memory
optimizing current performance. Another class (MM) BWs by 2

of questions include (1) estimating performance when Case 7b gl\?;efe(; Ll, L2, L3, MM, and on-node
S Oy

changing the problem size, number of processors, or moving Case 8a | Increased MM BW by 2

to a different system and (2) finding the optimal tuning Pl Tncreased MM and on-node BW by 2
parameters within a large search space. Both of these
questions can be addressed by performance models,

i.e., parameterized representations of application runtime.
Depending on the form of the model, it may be easily
manipulated ““manually". The difficulty with the model is its case1
generation. There are a number of modeling methodologies)
described in the literature, including the PMaC tools and

methodology examined in these studies. Here PMaC is used case8a case3 —e— Gyro 2x

to examine the performance impact of changing a number of l sensitivty
. . < . —=— Gyro 4x

different machine characteristics, relative to performance on case7b cased sensitivity

16 processors of the IBM p655+ cluster at NAVO. From
these results the code is having difficulty staying within the case7a % case5

mid-tier (L2) and outer-tier (L3) cache, as it greatly benefits
from L3 and MM BW increases.

caseb

2EEs o , PSS Office of
:'-“ SCLD .A.C 18 _QO | Science

Scientific Discovery through Advanced Computing U DA N Nt iy

Conclusions

This study indicates that there are a number of common performance analyses for which sophisticated performance
tools are not necessary. However, many of these analyses are expensive, in both system resources and labor, and a
number of useful analyses are simply not practical to perform manually, thus requiring tool support. There is a
tradeoff between tool functionality and usability. Tools such as KOJAK, SvPablo, and TAU require considerable
effort to install and set up for use with an application in order to collect the desired performance metrics at an
appropriate level of granularity. Similarly, while models are wonderful tools that a developer could use for many
activities, generating the model is something few people are willing to do, and efficient ways of updating and
maintaining models are still open questions. In conclusion, there is still more to do in performance tool development,
but tools make performance analysis and optimization feasible in instances when it would not be otherwise,
especially when running with many processors and working with complex applications.

=" Office of
.gr, Z Science

U.S. DEPARTMENT OF ENERGY

19

References

B1-std. R. Waltz, G. Kerbel, and J. Milovich. Toroidal gyro-landau fluid model turbulene simulations in a nonlinear
ballooning mode representation with radial modes, Phys. Plasmas, 1 (1994), p. 2229.
GYRO. J. Candy and R. Waltz, An eulerian gyrokinetic-maxwell solver, J. Comput. Phys., 186 (2003), p. 545.

HPM. http://www.research.ibm.com/actc/projects/hardwareperf.shtml .

IPM. http://www.nersc.gov/nusers/resources/SP/ipm/ .

KOJAK. http://icl.cs.utk.edu/kojak/ .
MPICL. http://www.csm.ornl.gov/picl/ .

ORNL Computer Systems. http://www.ccs.ornl.gov/ .

NCSA Computer Systems. http://www.necsa.gov/ .

NERSC Computer Systems. http://www.nersc.gov/ .

ParaGraph. M. T. Heath and J. A. Etheridge, Visualizing the performance of parallel programs, IEEE Software, 8
(1991), pp. 29-39.

PERC. http://perc.nersc.org/ .

PMacC. http://www.sdsc.edu/PMaC/ .

SvPablo. Pablo Research Projects. http://www.renci.unc.edu/Project/ResearchProjects.htm

TAU. http://www.cs.uoregon/reseach/paracomp/tau/tautools/ .

Z=y Offi f
1O Scionce

U.S. DEPARTMENT OF ENERGY

20

