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Analyzing Terascale MD Trajectories, SC 2008.

@ 1M atoms, 100M snapshots = 3 Pbytes
@ Stats on where each atom traveled

e near-approach to docking site
e membrane crossings

Data is stored exactly wrong for this analysis

MapReduce solution:
@ map: read snapshot, emit key = ID; value = (time, xyz)
@ communicate: aggregate all values with same ID
© reduce: order the values, perform analysis

o Key point: extremely parallel comp + MPI_All2all comm



Why is MapReduce attractive?

o Plus:
e write only the code that only you can write
o write zero parallel code (no parallel debugging)
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@ Plus/minus (features!):
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@ key hashing = slow global address space
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o Minus:
e have to re-cast your algorithm as a MapReduce
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@ Plus/minus (features!):

@ ignore data locality
e load balance thru random distribution

@ key hashing = slow global address space
e maximize communication (all2all)
o Minus:
e have to re-cast your algorithm as a MapReduce

Good programming model for big data analyst:
not maximal performance, but minimal human effort
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e MR-MPI: http://mapreduce.sandia.gov
e MapReduce on top of MPI
o Lightweight, portable, C++ library with C API
e Out-of-core on big iron if each proc can write scratch files
o No HDFS (parallel file system with data redundancy)
o No fault-tolerance (blame it on MPI)
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e on HPC platform, don't have to move your data
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@ Post-simulation analysis of big data output:
e on HPC platform, don't have to move your data
e computations needing info from entire time series
e trajectories, flow fields, acoustic noise estimation
Matrix operations:
e matrix-vector multiply (PageRank kernel)
o tall-skinny QR (D Gleich, P Constantine)
@ simulation data = cheaper surrogate model
@ 500M x 100 dense matrix = 30 min on 256-core cluster
Graph algorithms:
vertex ranking via PageRank (460)
connected components (250)
triangle enumeration (260)
single-source shortest path (240)
sub-graph isomorphism (430)

Machine learning: classification, clustering, ...
Win the TeraSort benchmark



No free lunch: PageRank (matvec) performance

Cray XT3, 1/4 billion edge sparse, highly irregular matrix
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@ MapReduce communicates matrix elements
@ But recall: load-balance, out-of-core for free
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MapReduce algorithm for sub-graph isomorphism
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One MR object per column of bipartite graph

Iterate from left to right, keying on colored vertices
Generate list of candidate walks, one edge at a time
Caveat: list can explode due to delayed constraints
But: 430 lines of code, no MPI, out-of-core graphs
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One MR object per column of bipartite graph

Iterate from left to right, keying on colored vertices
Generate list of candidate walks, one edge at a time
Caveat: list can explode due to delayed constraints
But: 430 lines of code, no MPI, out-of-core graphs

Example: 18 Tbytes = 107B edges = 573K matches
in 55 minutes on 256 cores



Streaming data

Continuous, real-time data

Stream = small datums at high rate

Resource-constrained processing;:

only see datums once
compute/datum < stream rate
only store state that fits in memory
age/expire data

Pipeline model is attractive:

o datums flow thru compute
processes running on cores

e hook processes together to perform
analysis

e split stream to enable shared or
distributed-memory parallelism




Streaming software

e IBM InfoSphere (commercial)

e Twitter Storm (open-source)

@ PHISH: http://www.sandia.gov/~sjplimp/phish.html
o Parallel Harness for Informatic Stream Hashing
@ phish swim in a stream
e runs on top of MPI or sockets (zeroMQ)




Streaming software

e IBM InfoSphere (commercial)

e Twitter Storm (open-source)

@ PHISH: http://www.sandia.gov/~sjplimp/phish.html
o Parallel Harness for Informatic Stream Hashing
@ phish swim in a stream
e runs on top of MPI or sockets (zeroMQ)

@ Key point: zillions of small messages flowing thru processes



PHISH net for real-time analysis of big data
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@ Data source could be experiment or simulation
@ A streaming MapReduce is now fine-grained and continuous
@ Could add user interactions for simulation steering




PHISH net for real-time analysis of big data

snapshots IDs
output — |
files _—
—
running B
simulation -

7
N

Data source could be experiment or simulation

A streaming MapReduce is now fine-grained and continuous
Could add user interactions for simulation steering

Graph algorithms can operate on stream of edges

1024 nodes of HPC: 150M edges/sec for hashed all2all
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@ Defining HPC in a broad way

e rack of servers + cheap interconnect is not traditional HPC
e Higgs talk is a good example

@ Defining big data in narrow way
e scientific data is only a tiny fraction of big data

@ How many Top50 machines owned by "big data” companies?

e If companies/govt spent $200B on big data today, would they
buy a Topl0 petascale machine?
@ Would they use HPC if you gave the machines away?
o tried that at Sandia

e gave a decommissioned HPC machine to intelligence groups
o barely used for big data problems
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@ Using HPC platform and MPI in non-optimal way:

little computation
ignoring data locality
all2all (MapReduce)

tiny messages (streaming)
lots of 1/0

o Big data for science vs informatics is different:

o Sci: compute bound; Info: memory/disk bound

e Sci: precise computations; Info: inexact/agile/one-off
e Sci: big data is an output; Info: big data is an input
e Sci: simulation is valuable, data is not; Info: inverse

@ HPC sells what big data customers don’t need:

e scientific simulations need CPUs and network
e big data needs disks and 1/0
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@ Plywood = racks of cheap cores & disks (Facebook, Walmart)



@ Gold = ORNL Jaguar
@ Aluminum = bioinformatics cluster at Columbia U
@ Plywood = racks of cheap cores & disks (Facebook, Walmart)

Olympic price metric: gold vs silver vs bronze

Medal: | $$ | $/PByte [ GBs/PB | TB/core | PB/Pflop |
Gold: $100M [ $10M 24 0.044 5
Aluminum: | $2.5M | $2.5M 20 0.25 40
Plywood: scalable | $0.3M 100 1+ 100+




Olympic price metric: gold vs silver vs bronze

@ Gold = ORNL Jaguar
@ Aluminum = bioinformatics cluster at Columbia U
@ Plywood = racks of cheap cores & disks (Facebook, Walmart)

Medal: | $$ | $/PByte [ GBs/PB | TB/core | PB/Pflop |
Gold: $100M [ $10M 24 0.044 5
Aluminum: | $2.5M | $2.5M 20 0.25 40
Plywood: scalable | $0.3M 100 1+ 100+

@ No one wants to pay gold prices to do big data computing
@ Big data informatics done on aluminum and plywood
@ 90% of Jaguar price is for hardware informatics barely uses
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o if computation is O(N), they can do it
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o Idea: add cheap CPUs to each disk, let disks do MapReduce
@ Q: what moves data between disks?
fast network or something else?
@ Q: Can disk-centric informatics run at same time
as CPU-centric simulation?
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Thanks & links

Sandia collaborators:

e Karen Devine (MR-MPI)
e Tim Shead (PHISH)
e Todd Plantenga, Jon Berry, Cindy Phillips (graph algorithms)

Open-source packages (BSD license):

e http://mapreduce.sandia.gov (MapReduce-MPI)
e http://www.sandia.gov/~sjplimp/phish.html (PHISH)

Papers:

@ Plimpton & Devine, “MapReduce in MPI for large-scale graph
algorithms”, Parallel Computing, 37, 610 (2011).

@ Plimpton & Shead, “Streaming data analytics via message
passing”, submitted to JPDC (2012).



