
SOS14 Panel Discussion

S ft i i t Software programming environments
and tools for GPUs

Where are they today?Where are they today?
What do we need for tomorrow?

Savannah, GA
09 March 2010

John A. Turner, ORNLJohn A. Turner, ORNL
Allen Malony, Univ. of Oregon

Simone Melchionna, EPFL
Mike Heroux SNLMike Heroux, SNL

DOE INCITE applications span a
broad range of science challenges
Projects 2006 2007 2008 2009
Accelerator physics 1 1 1 1
Astrophysics 3 4 5 5
Chemistry 1 1 2 4
Climate change 3 3 4 5
Combustion 1 1 2 2
Computer science 1 1 1 1
Fluid Dynamics 1 1
Fusion 4 5 3 5
Geosciences 1 1 1
High energy physics 1 1
Life sciences 2 2 2 4
Materials science 2 3 3 4
Nuclear physics 2 2 1 2
Industry 2 3 3 3

2 U. S. Department Of Energy 2

Total Projects: 22 28 30 38
CPU Hours: 36,156,000 75,495,000 145,387,000 469,683,000

Application Challenges

• Node-level Concurrency
– finding sufficient concurrency to amortize or hide data movement costs

thread creation and management– thread creation and management
• Data movement

– managing memory hierarchymanaging memory hierarchy
– minimizing data movement between CPU and GPU

• Programming models
– expressing the concurrency and data movement mentioned above
– refactoring applications undergoing active development

maintaining code portability and performance– maintaining code portability and performance
• Compilers and tools

– availability, quality, usability

3

availability, quality, usability
– ability to use particular language features (e.g. C++ templates)

Software programming environments
and tools for GPUs

• How are you programming GPUs today?

(Where are they today? What do we need for tomorrow?)

– In preparing apps for hybrid / accelerated / many-core platforms,
what is your preferred path for balancing performance, portability,
and “future-proofing”?and future proofing ?

– What is the typical effort required to refactor applications for hybrid
/ accelerated / many-core platforms?

• What role does performance modeling play, if any?
– What role can / should it play?

4

Software programming environments
and tools for GPUs
(Where are they today? What do we need for tomorrow?)

• What programming environment tools are key to preparing
li ti f i l tf ?applications for coming platforms?

– What tools are most in need of improvement & investment?

D th li ti difi ti f i ti d t • Do the application modifications for existing and near-term
platforms (Roadrunner, GPU-accelerated systems) better
prepare them for other future platforms envisioned in the prepare them for other future platforms envisioned in the
Exascale roadmap?

5

Software programming environments
and tools for GPUs

• What is difficult or missing from your current programming

(Where are they today? What do we need for tomorrow?)

models?
• What important architectural features must be captured in

new programming models?
• What are the possible future programming models 10 and

20 f ?20 years from now?

6

Software programming environments
and tools for GPUs
(Where are they today? What do we need for tomorrow?)

• In previous major shifts such as vector to distributed-memory
parallel some applications did not survive or required such parallel, some applications did not survive or required such
major re-factoring that for all intents and purposes they were
new codes.

Wh t f ti f li ti ld di t ill f il t k thi – What fraction of applications would you predict will fail to make this
transition?

– Will the survival rate be significantly different between “science”
 d “ i i ” ?apps and “engineering” apps?

– Software has become more complex since the last major transition,
but also tends to make greater use of abstraction. In the end does
thi h l hi d li ti i i t th hit t ?this help or hinder applications in moving to these architectures?

– Is there an aspect to survival that could be viewed as a positive
rather than a negative? That is, does the “end of the road” for an

li ti ll t t it t thi k th h i /

7

application really present an opportunity to re-think the physics /
math / algorithms / implementations?

Allen Malony slides

8

High PerformanceHigh PerformanceHigh Performance
Simulations

High Performance
Simulations

of Complex Biological Flows
on CPUs and GPUs

of Complex Biological Flows
on CPUs and GPUs

Simone Melchionna

on CPUs and GPUson CPUs and GPUs

EPFL

EPFL, CH Harvard, US CNR, Italy

9

Multi-scale Hemodynamics

LevelLevel‐‐setset toto 3D 3D
reconstructionreconstruction

MeshMesh
generationgeneration

iiDomain Domain
partitioningpartitioning

10
Vascular Remodeling

MUPHY: MULti-PHYsics simulator

Graph-partitioning

11

Multiscale computing: GPU challenges

Heterogeneous Multiscale Simulation: does not necessarily fit
Heterogeneous Computing and data-parallel accelerators. Method
modifications have long latency for code modificationsmodifications have long latency for code modifications.

Great constraints on programmers: 1) Avoid conditionals 2) Avoid non-
coalesced Global Memory access 3) Lack of inter-block comms 4) Datacoalesced Global Memory access 3) Lack of inter block comms 4) Data
layout critical.

Rethinking consolidated simulation methods: a great practice. g g p

Hybrid programming model: efficient ☺, accessible /, vulnerable /

For Multiscale sims several components do not map on
threads/coalesced mem access. E.g. bisection search, ordered
traversing of matrix elements.

12

Development is not an incremental porting: CPU-GPU bandwidth
critical step.

Wish list
Overcome the heroic stage: more accessible programming model and lift
constraints on programmers. More room for science! Less strain on global
code rewriting (scripting & meta-programming). Allow for incremental

tiporting.

Overcome programming models vulnerabilities (long modification latency)
and increase level of abstractionand increase level of abstraction

More libraries and coarse/fine grained algorithmics. Profiling & debugging
tools More testbeds more HW emulators more mature ties withtools. More testbeds, more HW emulators, more mature ties with
community. Avoid the xN temptation.

Establish models and best practice for established simulation methods. p
Put forward a GPU landscape on the simulation methods space.
Establish models on data locality (method rethinking!).

13

Moving object simulation methods: establish new roadmaps.

Mike Heroux: Programming Environments for GPUs

• In preparing apps for hybrid / accelerated / many-core platforms what is your preferred path In preparing apps for hybrid / accelerated / many core platforms, what is your preferred path
for balancing performance, portability, and “future-proofing”?
We have developed a node API using C++ template meta-programming. It is similar to
CUDA (actually Thrust) with the OpenCL memory model (Trilinos NodeAPI).

• What is the typical effort required to refactor applications for hybrid / accelerated / many-core
platforms?
We started with a clean slate (Tpetra) instead of refactoring Epetra.

• What programming environment tools are key to preparing applications for coming platforms.
What tools are most in need of improvement & investment?
We need a portable programming model, higher level than OpenCL. CUDA level is
sufficient. Something like CUDA SDK is essential.

• What role can performance modeling play, if any?
Some, but working example suite is even better, or miniapps.g p pp

• Do the application modifications for existing and near-term platforms (Roadrunner, GPU-
accelerated systems) better prepare them for other future platforms envisioned in the Exascale
roadmap?

14

p
Yes, if not in reusable software, at least in strategy and design.

Mike Heroux: Programming Environments for GPUs

• In previous major shifts such as vector to distributed-memory parallel, some applications did
not survive or required such major re-factoring that for all intents and purposes they were new
codes.
– What fraction of applications would you predict will fail to make this transition?

Many will make it, at least as “petascale kernels”.
– Will the survival rate be significantly different between “science” apps and “engineering” apps?

Science “forward problems” appear to be more scalable than engineering forward problems Science forward problems appear to be more scalable than engineering forward problems.
But engineering apps are more ready for advanced modeling and simulation, UQ, etc.

– Software has become more complex since the last major transition, but also tends to make greater
use of abstraction. In the end does this help or hinder applications in moving to these architectures?
Proper abstraction can be a huge advantage. Caveat: Abstraction can solve any problem
except too much abstraction.

– Is there an aspect to survival that should be viewed as a positive rather than a negative? That is,
does the “end of the road” for an application really present an opportunity to re-think the physics / does the end of the road for an application really present an opportunity to re think the physics /
math / algorithms at a deeper level?
Yes, but parallelism cannot overcome inferior algorithm complexity.

15

Trilinos Node API Example Kernels: axpy() and
dot()
template <class WDP>
void
Node::parallel_for(int beg, int end,

WDP workdata);

template <class WDP>
WDP::ReductionType
Node::parallel_reduce(int beg, int end,

WDP workdata);

template <class T>
struct AxpyOp {

t T *

template <class T>
struct DotOp {

t d f T R d ti Tconst T * x;
T * y;
T alpha, beta;
void execute(int i)

typedef T ReductionType;
const T * x, * y;
T identity() { return (T)0; }
T generate(int i) { return x[i]*y[i]; }

{ y[i] = alpha*x[i] + beta*y[i]; }
};

T reduce(T x, T y) { return x + y; }
};

AxpyOp<double> op; DotOp<float> op;
op.x = ...; op.alpha = ...;
op.y = ...; op.beta = ...;
node.parallel_for< AxpyOp<double> >

(0, length, op);

op.x = ...; op.y = ...;
float dot;
dot = node.parallel_reduce< DotOp<float> >

(0, length, op);

16

Work with Chris Baker, ORNL

Some Additional Thoughts

• New Programming Models/Environments:
– Must compete/cooperate with MPI.
– MPI advantage: Most code is serial.

• New PM/E:
– Truly useful if it solve the ubiquitous markup problem.
– Conjecture:

Data intensive apps will drive new PM/Es• Data-intensive apps will drive new PM/Es.
• Our community will adopt as opportunities arise.

• Source of new PM/Es: IndustrySource of new PM/Es: Industry.
– Best compilers are commercial.
– Runtime system is critical.

17

y

