Large Heterogeneous Systems

Sriram Swaminarayan

Team Leader, Evolving Applications & Architectures Team

Los Alamos National Laboratory

A 'heterogeneous' system does computation on two or more different types of computation cores

What is a Heterogeneous System?

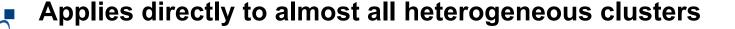
- 2 or more different types of computational cores
- Must be 'current'
- Only 'large' systems considered
 - How large is large?
- Reconfigurable systems, such as FPGAs, not considered
- Systems with different (or configurable) networks not considered

Goal is to understand the usability for science

- How vast?
- How fast?
- How painful?
- How portable?

Roadrunner Open Science Lessons Learned - I: Advanced Architectures Are Tractable

- Wide variety of applications have been accelerated
- A graded approach to acceleration is viable
 - Evolutionary: 2-4x improvement
 - Revolutionary: 6-9x improvement
- Getting an application running is easy
- Getting performance from it requires work
 - Identical to experience with GPUs today
- Success requires computer science experts and subject matter experts working together

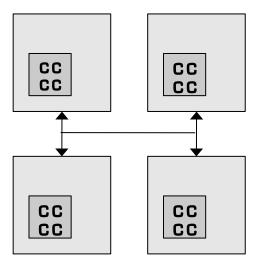

Roadrunner Open Science Lessons Learned - II: Keeping Track Of Your Data Is Key To Performance

Data Is Everything

- Who owns it? (Host or Accelerator?)
- Where is it now?
- Where is it needed next?
- How much does it cost to send it from now to next?

Three Primary Data Models Have Emerged

- Host Centric: Opteron owns the data
- Accelerator Centric: Cell (Accelerator) owns data
- Work Stealing: Dynamic distributed work load


'Multicore' clusters are the norm

- Cluster made up of identical nodes
- Each node has many sockets (~4 today)
- Each socket hosts a chip with several cores (~6 today)
- Each core can run many threads (~ 2 today)
 - AMD / Opterons
 - Intel / Xeons
 - IBM / PowerPC
- Poster Child: Jaguar 2009
 - #1 on Top500 list
 - #44 on Green500 list
- Advantages
 - All current scientific applications run on these clusters
 - Optimization techniques well understood
 - Compilers are mature
 - Hardware caches insulate scientist from memory hierarchy

Disadvantages

- Memory bandwidth limited: few codes achieve > 5% of peak performance
- Power hungry
- Large number of nodes imply more failure points

Vast?	Fast?	Pain?	Portable?
	00		(00)

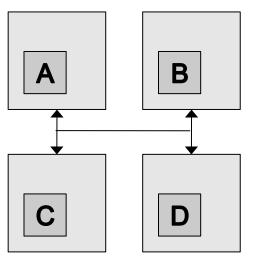
UNCLASSIFIED

'Diverse' clusters are multicore clusters with a mix of different types of nodes

- Cluster made up of different types of nodes
- 'Embarrassingly' heterogeneous
- Each node can have different type of processor
 - AMD / Opterons
 - Intel / Xeons
 - IBM / PowerPC
- Poster Child: Jaguar 2008
 - Cray XT4 & XT5 hooked together

Advantages

- Almost identical source code across all nodes
- Inherited from multicore clusters


All current scientific applications run on these clusters Optimization techniques well understood Compilers are mature Hardware caches insulate scientist from memory hierarchy

Disadvantages

- · More than one compiler / binary
- Partitioning is a challenge
- Inherited from multicore clusters

Memory bandwidth limited: few codes achieve > 5% of peak performance Power hogs: most power goes into moving data Large number of nodes imply more failure points

Diverse

	Vast?	Fast?	Pain?	Portable?
Diverse		00	(00)	00
Multicore	9	00	9	00

EST.1943

UNCLASSIFIED

'Accelerated' clusters are multicore clusters with computational accelerators on each node

Accelerators attached to each compute node

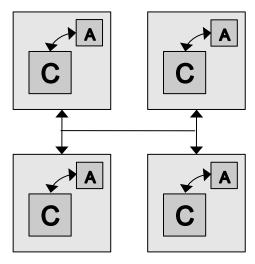
- · Heterogeneity is off-chip, but on-node
- Most of compute power resides in accelerator
- Accelerators not connected to network

Each node typically has same type of accelerator

- IBM Power XCell 8i
- Clearspeed
- GPU (NVIDIA / ATI)
- MD Grape (special purpose)

Poster Child: Roadrunner

- · Opteron cluster accelerated with Cells
- #2 on Top500 list
- #6 on Green500 list


Advantages

- Power sippers
- Smaller number of nodes

Disadvantages

- Cannot easily 'port' existing code base
- Deep memory hierarchy
- More than one compiler / binary
- Compilers not mature
- Partitioning is a challenge
- · Bus bandwidth limited

Accelerated

	Vast?	Fast?	Pain?	Portable?
Accelerated	00	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	99	
Multicore		00		00
Diverse		00	00	00

UNCLASSIFIED

Each Socket in a 'Heterogeneous' cluster contains many different types of cores

Heterogeneous chips plugged into each socket

- Homogeneous cluster of heterogeneous chips i.e. heterogeneity is on-chip
- Different performance characteristics of each core within each socket
- Cores can communicate on the network

All chips are identical: heterogeneity is intra-chip

- IBM Power XCell 8i
- AMD Fusion

Poster Child: QPace SFB TR cluster

- IBM Power XCell 8is connected with infiniband
- #110 on Top500 list
- #1 on Green500 list


Advantages

- Power misers
- · Smaller number of nodes

Disadvantages

- Cannot easily 'port' existing code base
- Deep memory hierarchy
- · Memory bandwidth limited
- More than one compiler / binary
- · Compilers not mature
- Partitioning is a challenge

Heterogeneous

	Vast?	Fast?	Pain?	Portable?
Heterogeneous			00	90
Multicore		00		00
Diverse		00	00	00
Accelerated	(O) (O) (P) (P) (P) (P) (P) (P) (P) (P) (P) (P	00	99	99

UNCLASSIFIED

'Manycore' clusters contain many identical cores per socket

Identical chips plugged into each socket

- What is 'many' cores per chip? (>= 16 maybe?)
- Identical performance characteristics of each core
- Cores can communicate on the network

All cores are identical

Typical Manycore chips

- IBM Blue Gene
- Intel SCC
- Sun Niagara
- Intel Larrabee

Poster Child: Dawn / Sequoia


• IBM Blue Gene / [P,Q]

Advantages

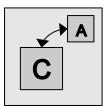
- · Lower power consumption than multicore clusters
- Smaller number of nodes
- Easy to port existing code bases
- Single compiler / binary

Disadvantages

- Deep memory hierarchy
- Memory bandwidth limited

	Vast?	Fast?	Pain?	Portable?
Manycore	9		00	00
Multicore		00		00
Diverse		00	00	00
Accelerated	(0 0)	00	99	90
Heterogeneous			00	60

UNCLASSIFIED


Accelerated Systems - Current

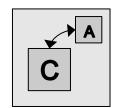
Roadrunner – Cell accelerated

- Accelerator: Power XCell 8i
- 96% of compute power in accelerator
- 1.05 PF (77% of peak)
- #6 on Green 500 List
- #2 on Top 500 List
- Debut 6/08 @ #1
- Location: LANL

Tianhe-1 – GPU accelerated

- Accelerator: ATI Radeon HD4870
- 79% of compute power in accelerator
- 0.57 PF (47% of peak)
- #8 on Green500 List
- #5 on Top500 List
- Debut 11/09 @ #5
- Location: NUDT, China

	Vast?	Fast?	Pain?	Portable?
Manycore			00	00
Multicore		00		00
Diverse		00	00	00
Accelerated	00	00	99	99
Heterogeneous			00	00



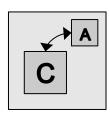
UNCLASSIFIED

Accelerated Systems - Current

Tsubame-1.2 GPU accelerated

- Accelerator: NVIDIA Tesla 1070S, ClearSpeed CSX60
- ??% of compute power in accelerator
- 0.57 PF (47% of peak)
- #291 on Green500 List
- #56 on Top500 List
- Debut 6/09 @ #41
- Location: GSIC, Tokyo Institute of Technology

	Vast?	Fast?	Pain?	Portable?
Manycore			00	00
Multicore		00		00
Diverse		00	00	00
Accelerated	00	00	99	90
Heterogeneous	9		00	00


Accelerated Systems - Near Future

Jaguar-2012

Accelerator: NVIDIA Fermi GPU

• 10-20 PF peak

Location: ORNL

Tsubame-2.0 2012?

Accelerator: NVIDIA Fermi GPU

• 3.0 PF peak

Location: Tokyo Institute of Technology

	Vast?	Fast?	Pain?	Portable?
Manycore			00	60
Multicore		00		00
Diverse		00	00	00
Accelerated	00	00	99	99
Heterogeneous		9	00	00

Keeneland-2012

Accelerator: NVIDIA Fermi GPU

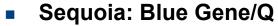
2 PF peak

Location: Georgia Tech

Heterogeneous Systems

QPace Cluster PowerXCell 8i

- Performance: 0.043 PF (77% of peak)
- #1 on Green500 list
- #110 on Top500 list
- Debut 11/09 @ #110
- Location: Forschungszentrum Juelich, Germany


	Vast?	Fast?	Pain?	Portable?
Manycore			00	60
Multicore		00		00
Diverse		00	00	00
Accelerated	(0 0)	00	99	90
Heterogeneous	9	9	00	00

Manycore Systems

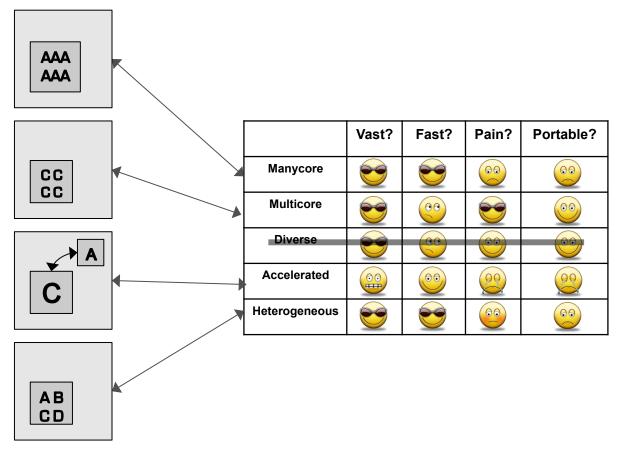
Dawn: Blue Gene / P

- Performance:
- #22 on Green500 List
- #11 on Top500 List
- Debut 6/2009 @ #9
- Location: LLNL

- 16 cores? (HPC Wire 2/3/9)
- 20 PF
- 2012 delivery
- Location: LLNL

Blue Waters: Power7

- 8 cores?
- 10 PF
- 2012 delivery
- Location: UIUC



	Vast?	Fast?	Pain?	Portable?
Manycore			00	60
Multicore		00		00
Diverse		60	00	00
Accelerated	()	00	99	99
Heterogeneous			00	00

UNCLASSIFIED

Questions?

UNCLASSIFIED Slide 15