
  

SOS Panel on Compilers and Tools
Software Scaling Challenges

for the Exascale

March 10, 2009

Kevin Pedretti
Scalable System Software Department

Sandia National Laboratories
ktpedre@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.



  

Panel Questions
● What is a/the major challenge to reaching productive exascale computing?

● Being more resilient to faults
● Dealing effectively with massive parallelism and data/thread

placement issues within a node
● Simply understanding what is going on in the machine
● Innovating with and alongside commodity system software

● How can tools and compilers help in addressing these issues?
● Tools and libraries for easing or hiding (partially) redundant computation

– Sandia Redundant MPI library
● Smarter intra-node auto-parallelizing compilers

– Hopeful general-purpose computing market will push this
– But not sold yet on the “negotiate with the compiler” model

● Real-time performance data gathering and display/replay
– OS and runtime driven, rather than individual app process-driven
– Identify hot spots and mitigate by migrating threads/data

● Research tools for exploring system software options
● Auto-tuners to explore (ever-expanding) option spaces

Google adds ~300K
LOC to Linux,

~75% core changes
(Source: lwn.net)



  

Panel Questions (continued)

● What won't compilers and tools be able to help with?
● Making exascale programming easy

● Tools and compilers for petascale were incremental changes from the 
gigascale.  Why is this not the case for petscale -> exascale, or will it 
be?
● It will be incremental until it can't be

● Will take time and experience to figure out what non-incremental 
tools would be helpful

● What is the one piece of current software and tools that you would 
totally scrap and either do without or replace?  Why?
● Honestly, couldn't come up with anything serious

● Not big fan of the tracing+profiling tools I've used,
haven't tried Tau or Vampir but plan to



  

Using Virtualization as a Tool

● For end-user flexibility
● Provide full functionality OS 

option in LWK environment

● Run commodity OSes

● Convenient packaging

● For research
● X-Stack development and 

large-scale test
● Add capabilities to guest 

OS without modifying it
● VM migration/resilience
● Instrumentation and 

debugging

Kitten homepage:  https://software.sandia.gov/trac/kitten
Palacios homepage:  http://www.v3vee.org/palacios/

https://software.sandia.gov/trac/kitten
http://www.v3vee.org/palacios/


  

Large-scale Virtualization
Experiments on Red Storm

CTH (shaped charge) Sage (timing_c)

< 5% virtualization overhead
for all cases tested



  

With Reduced Network/Compute Balance,
Node Allocation (Might?) Become More Important

● 29% worse at 
1024 cores
(128 nodes)

● Default vs. 
random node 
allocation 7.4% 
worse at 64 
cores (8 nodes) 

● Reasons to care

● Predictability
● Power

CTH, Full vs. ¼ Bandwidth



  

Why Don't We Do This?

Application provided
topology info

Task Mapping

Task to Machine
Mapper

Observed Behavior

● Over provisioning of 
network largely hides 
impact of bad 
placement today, 
tomorrow?

● Requires inter-node 
task migration

● Requires cooperation 
of multiple software 
components

● Model applies to both 
inter and intra node 
placement


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

