Challenges Using
Heterogeneous Systems

Jeremy Meredith

Oak Ridge National Laboratory
March 9, 2010



A Historical GPU Perspective



Challenges (ca. 2005)

* Moving targets
= Hardware capabilities (e.g. branching)
= Language features (e.g. instruction limits)
= Drivers are incomplete and unstable

= Vendor-specific limitations (num texture
fetches/program, FBOs)

= Variation across operating systems (RenderTexture)

* Precision limitations
= 32-bit floats in best case
= Not full IEEE rounding



Challenges (ca. 2005)

* Memory limitations

= 512MB is an upper limit
= Array size limited to 4096x4096

* Bandwidth to/from the card

= AGP common, PCle typically a fraction of its 4GB/s max
= Asymmetric — readback can be many times worse

* Capabilities change almost unpredictably

= Example: alpha blending on NV40 series
» Works with 8-bit buffers
» Software emulated with 16-bit float buffers
 Fails silently with 32-bit float buffers



Challenges (ca. 2005)

* No debugger, no profiler

* Fast paths are elusive
= Pack to 4-component textures
= Use BGRA, not RGBA
= Use PBOs, not glTexIlmage2D

= Use ping-pong FBOs, not PBuffers with
glCopyTexSublmage2D

= Use non-square textures to disable tiling
* Accurate timings are hard

= Optimization happens at first render, not initialization
= First readback might cause actual calculation



Improvements

* Moving targets

= Hardware capabilities, language features, vendor- and OS-
specific limitations are minimized by CUDA and OpenCL

» But they exist, e.g. max # allowable local threads in OpenCL
ranges from 1 to 1024 on various platforms.

= Drivers are much better, but still too often beta (or worse)

* Limited precision
= 32-bit floats are a minimum level
= 64-bit floats now well supported, and gap is closing
= |[EEE compliant



Improvements

* Memory limitations

= 512MB is still common, but 4GB upper limit (still
smaller than equivalent host memory)

= Array size limits many times larger, but still there

* Bandwidth to/from the card
= >4GB/sec seen with PCle gen2, mostly symmetric

* Changing capabilities
= Much better as standards encompassing these uses



Improvements

* Debuggers, Profilers exist for some platforms

* Fast paths exist, but are better documented

= Many old “fast paths” challenges were due to using
graphics APIs

= New ones are better documented and more
representative of hardware

* Accurate timings are still hard
= Asynchronicity Is even more prominent
= OpenCL includes event timers
= Care still needed



So: Why iIs Using Heterogeneous
Systems Hard?

* A new device type adds more parallel layers
= One API/language to solve them all at once?
* The features that make them fast (e.g. dedicated
wide memory bus) add programming complexity
* The devices we’re using aren’t that mature

= At least not for how we’re using them

= As they become more mature (ECC, unified
shaders), they do become easier to program

= Compilers, tools, profilers need improvement



BACKUP SLIDES



Questions

What makes it hard? Is it really that hard? How
can we make It easier?

Is it human aversion? Is it lack of experience or
training?

Is it the lack of a standard programming model?
Is it the dearth of languages, compiler tools,

software development environments and
runtimes?

How much of it 1s hardware limitations or
specializations?



GPU PCB Layout

e.g. GDDR5 DRAM at 5GHz (eff)

Image from http://techreport.com/articles.x/14168



