
Accelerating past the petascale

A case study of GPGPUs 
in chemistry
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Why accelerators and why now?

• Path to exascale
– power 0.1 → 100 GFLOP/Watt

– memory 0.3 → 0.03 byte/FLOP

– cores 8 → 64-1024+ per node

– number of cores 100K → 100M

– concurrency 106 → 109

• Must express & exploit parallelism at all levels
– Currently only have coarse (MPI) and medium 

(within SMP) granularity

• Mainstream CPUs no longer provide sufficient 
density of computation – convergence when/if?
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O(1) programmers
O(10,000) nodes
O(100,000) processors
O(100,000,000) threads

• Complexity kills … sequential or parallel 

• The “P” in HPC: performance & productivity
– Cannot sacrifice productivity at the altar of 

performance
– Hopefully a transitional / learning period

• Need tools to automate and manage concurrency 
even at runtime
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GPGPUs v.s. CPUs

• How to rationalize the extreme acceleration 
seen in published “benchmarks” comparing 
GPUs to x86 CPUs

– 100x, 200x, 400x, ... !!!???

– What is attributable to hardware?

– What is due to compilers/libraries?

– What is the effort involved?

– What should we be promising users of our S/W?
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Concrete example hardware

• Intel Core i7 920 @ 2.67 GHz, 1.33 GHz DDR3
– Quad core

• Each core 4 double and 8 single precision FLOP/cycle
• 25 (35) GB/s memory bandwidth
• 32KB L1/core data, 256KB L2/core, 8M L3/shared

• NVIDIA Tesla C1060 @ 1.3 GHz
– 240 “cores”

• Each core 1 single precision MADD + 1 MUL / cycle
and 1/8 double precision MADD / cycle

• 102 GB/s memory bandwidth
• 64KB registers + 16KB shmem + 8KB texture cache + 

64KB constant cache per MP (i.e., per 8 cores)
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Concrete example hardware

• Speed Ratios       Tesla : Intel 920
– Ratio of single precision FLOP/s    11 : 1

– Ratio of double precision FLOP/s   1.8 : 1

– Memory bandwidth      4 : 1

– On-chip memory 0.51 : 1

• Latencies and latency hiding mechanisms
– Must consider in general

– Should not be relevant for this particular benchmark
(more to this story follows)
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Concrete example algorithm

• Metropolis Monte Carlo
– General and powerful

algorithm for multi-
dimension integration

– We abuse it to create
a 1D test code

– Reflects real 
applications

– Small enough to
fully dissect

〈 x 〉=
∫

0

∞

x e− x dx

∫
0

∞

e− x dx
=1

void kernel(FLOAT& x, FLOAT& p) {
   FLOAT xnew = drand()*FLOAT(23.0);
   FLOAT pnew = exp(-xnew);
   if (pnew > drand()*p) {

x = xnew;
p = pnew;

   }
}

p(x)=exp(-x) --> probability
drand(x) --> uniform ran# [0,1)
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Sequential algorithm

• N=240*256 independent samples
FLOAT x[N], p[N], sum=0.0;
for (int i=0; i<N; i++) {

x[i] = urand()*FLOAT(23.0); 
p[i] = exp(-x[i]);

}
for (int iter=0; iter<NEQ; iter++) {

for (int i=0; i<N; i++) {
kernel(x[i], p[i]);

}
}
for (int iter=0; iter<NCOMPUTE; iter++) {

for (int i=0; i<N; i++) {
kernel(x[i], p[i]);
sum += x[i];

}
}

on x86 drand calls “standard” random() function

initialize

equilibrate

sample
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CUDA kernel
• Parallelize over independent samples

#define NBLOCK 240
#define NTHREAD 256
#define N NBLOCK*NTHREAD
const FLOAT fac = 1.0/(1ul<<32); 
#define srand() unsigned int state = (blockIdx*NTHREAD + threadIdx.x)*3 + 1; \

for (int i=0; i<100; i++) drand();
#define drand() (state = 1103515245U*state + 12345U)*fac 
__global__ void kernel(SUMTYPE* psum) { 
    srand();
    FLOAT x = drand()*FLOAT(23.0), p = expf(-x);
    for (int iter=0; iter<NEQU; iter++) { 
        FLOAT xnew = drand()*FLOAT(23.0), pnew = exp(-xnew);
        if (pnew > drand()*p) { x = xnew; p = pnew; }
    } 
    SUMTYPE sum = 0.0; 
    for (int iter=0; iter<NCOMPUTE; iter++) { 
        FLOAT xnew = drand()*FLOAT(23.0), pnew = exp(-xnew);
        if (pnew > drand()*p) { x = xnew; p = pnew; }
        sum += x;
    } 
    psum[blockIdx.x*NTHREAD + threadIdx.x] = sum;
}

drand calls crude LCG optional different precision for accumulator

call fast version 
as appropriate
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CUDA v.s. x86 sequential performance

• Tesla is running 
– 850 x GCC and 520 x ICC

• This is a realistic and fair comparison of what is 
possible with minimal effort on both platforms

• But it tells us nothing about what is possible if 
we try hard

Platform Time/s #cycles/core/iteration

Tesla C1060 + CUDA
single precision

4.0 20.3

Intel i7 single core + GCC
double precision

3410 145

Intel i7 single core + ICC
double precision

2070 88

gcc 4.4.0 with -O3 option icc 11 with -fast option
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What’s wrong on the Intel CPU?

• Is this a problem with the 
– compilers, 

– libraries, 

– algorithm design, or 

– an intrinsic failure of the Intel core? 

– Looking ahead, we will conclude that the failure is 
a team effort.

• We will see it is not due to
– Hardware support for special functions on the GPU

– Synergy between different GPU features, etc.
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The poor, misunderstood x86 CPU

• It is not a sequential processor
– It is a multi-issue, out-of-order, heavily pipe-

lined device with SIMD acceleration & 4 cores

• Serial FP code will be too slow by up to ...
– 4x pipeline latency (5x for i7 multiply?)
– 2x SIMD register width (4x in single)
– 2x simultaneous + and * issue
– 4x for using only 1 out of 4 cores
– Total is 4*2*2*4 = 64 (128 in single precision)
– Need VL=80 in double precision (1 core)

• “Fat” loops need shorter VL
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Vectorizable? 

• This seems to  
epitomize
sequential code 
– 2 rand#, 1 exp(), and 1 if-test

• But a 30-year old Cray compiler would have 
automatically vectorized this loop 
– manual inline and using ranf()

• So did the CUDA compiler NVCC

• But we’re not aware of an x86 compiler that 
will oblige – so we must do it by hand

void kernel(FLOAT& x, FLOAT& p) {
   FLOAT xnew = drand()*FLOAT(23.0);
   FLOAT pnew = exp(-xnew);
   if (pnew > drand()*p) {

x = xnew;
p = pnew;

   }
}

for (int i=0; i<N; i++)
   kernel(x[i], p[i]);
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Hand vectorized kernel
• Mix of VML and hand-coded SSE assembly

double vkernel(int n, double* x, double* p) {
    static double xnew[VL] ALIGNED;
    static double pnew[VL] ALIGNED;
    static double test[VL] ALIGNED;
    vrand(n, test);
    vrand(n, xnew); 
    vscale(n, -17.0, xnew, pnew);
    vexp(n, pnew, pnew);
    vmul(n, test, p, test);
    vDmask_lt(n, pnew, test, test);
    vDmerge(n, test, p, pnew, p);
    vDmerge(n, test, x, xnew, x);
    return vsum(n, x);
}

Uses CMPDD to form mask

Uses ANDPD, ANDNPD, 
POR to merge vectors 
under mask

vectorized version of Brent’s 48-bit LFG, 

VML is missing vectorized sum, mask, merge, and fast ran# generator
VML exp is both fast and accurate in LA mode ... EP is unreliable



03/09/10 Robert J. Harrison, UT/ORNL 15

Performance prediction and measurement

• Measured is 23.5 cycles/iteration/core

• Single precision will be exactly 2x as fast since it 
just involves 2x wider registers
– Did not measure since am totally fed up of writing asm

Operation Cycles

2 random values 5

1 scale 0.5

1 exp 11

1 mul 0.5

1 compare 0.5

2 merge 4

1 sum 0.5

Total 21
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Bottom line
• Head-to-head comparison of vectorized single 

precision kernels – Tesla:Intel quad core 17.6 : 1
– ~5x speed up in special function evaluation 

• Intel VML takes 11 cycles/exp in dp 
• GCC takes 56 in dp & 600 in sp !!

– 2x speed up by comparing single to single

– 4x speed up by using all 4 cores

• The cpu and GPU were using different random# 
generators and the LCG on the GPU was bad
– A lot of state on the GPU is problematic

– Recode both to use Marsaglia complementary multiply 
with carry, base 232 -1, 64-bit state, period 1e19

– Ratio is now ~12:1 (slowed the GPU)
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Bottom line

• The optimal x86 and CUDA kernels are “identical”
– Loop over blocks to provide coarse parallelism and tile 

data into registers/cache/shared memory

– Loop over threads/vector elements to provide SIMD 
parallelism and hide memory latency

• Any credible architecture benchmark must back 
port the CUDA kernel to the x86 & vectorize it



03/09/10 Robert J. Harrison, UT/ORNL 18

Kudos to CUDA
• SIMT + rigid register and shmem constraints

– Forces efficient program design for algorithms that fit 

• NVIDIA GPGPU
– Predicated ops + SFU ease code generation

• x86 compilers ignoring 25 years of knowledge?
– 16-byte alignment problem (not in AMD SSE-128)

– Cray is developing a vectorizing x86 compiler

• The CUDA code structure is optimal even for x86

• MCDUA (Stratton and Hwu)
– Portable solution ... needs full vectorization not just 

serial loop plus intrinsics
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Multiresolution chemistry objectives
• Scaling to 1+M processors ASAP
• Complete elimination of the basis error

– One-electron models (e.g., HF, DFT)
– Pair models (e.g., MP2, CCSD, …)

• Correct scaling of cost with system size
• General approach

– Readily accessible by students and researchers
– Higher level of composition 
– Direct computation of chemical energy differences

• New computational approaches 
– Fast algorithms with guaranteed precision
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Essential techniques for fast 
computation

• Multiresolution

• Low-separation 
rank

• Low-operator 
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0V 1−V 0 ⋯ V n−V n−1 

f x1, , xn=∑
l=1

M

 l∏
i=1

d

f i
 l 
 xiO 

∥ f il ∥2=1 l0

A=∑
=1

r

u v
TO 

0 v
T v=u

T u=
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High-level composition
• Close to the physics
    

operatorT op = CoulombOperator(k, rlo, thresh);

functionT rho = psi*psi;

double twoe = inner(apply(op,rho),rho);

double pe = 2.0*inner(Vnuc*psi,psi);

double ke = 0.0;

for (int axis=0; axis<3; axis++) {

    functionT dpsi = diff(psi,axis);

    ke += inner(dpsi,dpsi);

}

double energy = ke + pe + twoe;

E=〈∣−
1
2
∇

2
V∣〉∫

2
x 

1
∣x− y∣


2
 y dx dy
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High-level composition

• Express ALLALL available parallelism without 
burdening programmer
– Internally, MADNESS is looking after data and 

placement and scheduling of operations on 
individual functions

– Programmer must express parallelism over 
multiple functions and operators

• But is not responsible for scheduling or placement
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MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks being considered for multicore
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Runtime Objectives
● Scalability to 1+M processors ASAP
● Runtime responsible for 

● scheduling and placement, 
● managing data dependencies, 
● hiding latency, and
● Medium to coarse grain concurrency

● Compatible with existing models
● MPI, Global Arrays

● Borrow successful concepts from 
Cilk, Charm++, Python

● Anticipating next gen. languages



Key elements
● Futures for hiding latency and 
automating dependency management

● Global names and name spaces

● Non-process centric computing
● One-sided messaging between objects
● Retain place=process for MPI/GA legacy

● Dynamic load balancing
● Data redistribution, work stealing, randomization
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Multi-threaded architecture

RMI Server
(MPI or portals)

Incoming active
messages

Task dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active messages

Work stealing

Task attributes indicate #threads, if it 
can run on host, accelerator, or either 
... full dynamic load balance
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Computational kernels

• Discontinuous spectral element
– Cache friendly, vectorizable kernels
– In each “box” a tensor product of coefficients
– Most operations are small matrix-multiplication

– Typical matrix dimensions are 2 to 30
– E.g., (20,400)T  * (20,20)

r i ' j ' k '=∑
i j k

si j k c i i ' c j j ' ck k '=∑
k ∑j ∑i s i j k ci i ' c j j ' ck k '

⇒ r= sT cT c T c
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Ratio of Speeds of MKL, Goto, ATLAS 
to MTXMQ on Intel Xeon 5355 

for (20,400)T*(20,n).

n MKL Goto ATLAS n MKL Goto ATLAS

2 6.25 4.1667 5 16 0.8966 1.2581 2.0708

4 3.1042 3.6341 4.6563 18 1.7763 1.3636 2.4545

6 4.375 2.625 5.122 20 0.9556 1.2727 2.6168

8 1.3132 2.0427 5.1957 22 1.6416 1.2968 2.7308

10 2.7368 1.9549 5.3061 24 0.9638 1.2208 1.9664

12 1.0605 1.5843 2.4352 26 1.5337 1.2814 2.1295

14 2.0323 1.4737 2.1356 28 0.8411 1.0588 2.0301
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XT5 single core FLOPs/cycle

(nj, ni)T*(nj,nk)

ni nj nk MTXMQ ACML

400 2 20 2.55 0.95

400 4 20 2.62 1.50

400 6 20 2.60 1.79

400 8 20 2.56 2.02

400 10 20 2.58 2.12

400 12 20 2.64 2.27

400 14 20 2.90 2.35

400 16 20 2.80 2.46

400 18 20 2.74 2.49

400 20 20 2.89 2.58

nested transform (nj, ni)T*(nj,nk)

ni nj nk MTXMQ ACML

4 2 2 0.10 0.07

16 4 4 1.04 0.51

36 6 6 1.74 0.99

64 8 8 2.33 1.56

100 10 10 2.61 1.80

144 12 12 2.69 2.12

196 14 14 2.94 2.17

256 16 16 2.97 2.41

324 18 18 2.93 2.38

400 20 20 3.03 2.49

484 22 22 3.01 2.52

576 24 24 3.09 2.73

676 26 26 3.02 2.73

784 28 28 2.87 2.87

900 30 30 2.88 2.81L2 cache is 512Kb = 2*32^3 doubles
- hence expect good multi-core scaling
- measured linear speed up all 8 cores
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Initial results C1060 Single MP
    MTxM    [k,k2]Tx[k,k]

0 8 16 24 32
0.00

0.50

1.00

1.50

2.00

2.50

GFLOP/s

k

d.p.
GFLOP/s
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Combine multiple small kernels 
• Task queue implemented on Tesla

– Each task targets 1 MP (1 multi-threaded block )
– In principle C++ templates should work, but ??
– Overlap data transfer with compute
– Looking forward to next gen. card rumored to 

have more MIMD capabilities

• E.g., model kernel of
convolution operator
– 60 GF/s double precision ([32,1024]*[32,32])) 
– But this is neglecting many optimizations ... 

currently projecting perhaps 30+% of peak.

r=∑


 sT X  
T
Y 

T

Z  
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