
Accelerating past the petascale

A case study of GPGPUs
in chemistry

03/09/10 Robert J. Harrison, UT/ORNL 2

Why accelerators and why now?

• Path to exascale
– power 0.1 → 100 GFLOP/Watt

– memory 0.3 → 0.03 byte/FLOP

– cores 8 → 64-1024+ per node

– number of cores 100K → 100M

– concurrency 106 → 109

• Must express & exploit parallelism at all levels
– Currently only have coarse (MPI) and medium

(within SMP) granularity

• Mainstream CPUs no longer provide sufficient
density of computation – convergence when/if?

03/09/10 Robert J. Harrison, UT/ORNL 3

O(1) programmers
O(10,000) nodes
O(100,000) processors
O(100,000,000) threads

• Complexity kills … sequential or parallel

• The “P” in HPC: performance & productivity
– Cannot sacrifice productivity at the altar of

performance
– Hopefully a transitional / learning period

• Need tools to automate and manage concurrency
even at runtime

03/09/10 Robert J. Harrison, UT/ORNL 4

GPGPUs v.s. CPUs

• How to rationalize the extreme acceleration
seen in published “benchmarks” comparing
GPUs to x86 CPUs

– 100x, 200x, 400x, ... !!!???

– What is attributable to hardware?

– What is due to compilers/libraries?

– What is the effort involved?

– What should we be promising users of our S/W?

03/09/10 Robert J. Harrison, UT/ORNL 5

Concrete example hardware

• Intel Core i7 920 @ 2.67 GHz, 1.33 GHz DDR3
– Quad core

• Each core 4 double and 8 single precision FLOP/cycle
• 25 (35) GB/s memory bandwidth
• 32KB L1/core data, 256KB L2/core, 8M L3/shared

• NVIDIA Tesla C1060 @ 1.3 GHz
– 240 “cores”

• Each core 1 single precision MADD + 1 MUL / cycle
and 1/8 double precision MADD / cycle

• 102 GB/s memory bandwidth
• 64KB registers + 16KB shmem + 8KB texture cache +

64KB constant cache per MP (i.e., per 8 cores)

03/09/10 Robert J. Harrison, UT/ORNL 6

Concrete example hardware

• Speed Ratios Tesla : Intel 920
– Ratio of single precision FLOP/s 11 : 1

– Ratio of double precision FLOP/s 1.8 : 1

– Memory bandwidth 4 : 1

– On-chip memory 0.51 : 1

• Latencies and latency hiding mechanisms
– Must consider in general

– Should not be relevant for this particular benchmark
(more to this story follows)

03/09/10 Robert J. Harrison, UT/ORNL 7

Concrete example algorithm

• Metropolis Monte Carlo
– General and powerful

algorithm for multi-
dimension integration

– We abuse it to create
a 1D test code

– Reflects real
applications

– Small enough to
fully dissect

〈 x 〉=
∫

0

∞

x e− x dx

∫
0

∞

e− x dx
=1

void kernel(FLOAT& x, FLOAT& p) {
 FLOAT xnew = drand()*FLOAT(23.0);
 FLOAT pnew = exp(-xnew);
 if (pnew > drand()*p) {

x = xnew;
p = pnew;

 }
}

p(x)=exp(-x) --> probability
drand(x) --> uniform ran# [0,1)

03/09/10 Robert J. Harrison, UT/ORNL 8

Sequential algorithm

• N=240*256 independent samples
FLOAT x[N], p[N], sum=0.0;
for (int i=0; i<N; i++) {

x[i] = urand()*FLOAT(23.0);
p[i] = exp(-x[i]);

}
for (int iter=0; iter<NEQ; iter++) {

for (int i=0; i<N; i++) {
kernel(x[i], p[i]);

}
}
for (int iter=0; iter<NCOMPUTE; iter++) {

for (int i=0; i<N; i++) {
kernel(x[i], p[i]);
sum += x[i];

}
}

on x86 drand calls “standard” random() function

initialize

equilibrate

sample

03/09/10 Robert J. Harrison, UT/ORNL 9

CUDA kernel
• Parallelize over independent samples

#define NBLOCK 240
#define NTHREAD 256
#define N NBLOCK*NTHREAD
const FLOAT fac = 1.0/(1ul<<32);
#define srand() unsigned int state = (blockIdx*NTHREAD + threadIdx.x)*3 + 1; \

for (int i=0; i<100; i++) drand();
#define drand() (state = 1103515245U*state + 12345U)*fac
__global__ void kernel(SUMTYPE* psum) {
 srand();
 FLOAT x = drand()*FLOAT(23.0), p = expf(-x);
 for (int iter=0; iter<NEQU; iter++) {
 FLOAT xnew = drand()*FLOAT(23.0), pnew = exp(-xnew);
 if (pnew > drand()*p) { x = xnew; p = pnew; }
 }
 SUMTYPE sum = 0.0;
 for (int iter=0; iter<NCOMPUTE; iter++) {
 FLOAT xnew = drand()*FLOAT(23.0), pnew = exp(-xnew);
 if (pnew > drand()*p) { x = xnew; p = pnew; }
 sum += x;
 }
 psum[blockIdx.x*NTHREAD + threadIdx.x] = sum;
}

drand calls crude LCG optional different precision for accumulator

call fast version
as appropriate

03/09/10 Robert J. Harrison, UT/ORNL 10

CUDA v.s. x86 sequential performance

• Tesla is running
– 850 x GCC and 520 x ICC

• This is a realistic and fair comparison of what is
possible with minimal effort on both platforms

• But it tells us nothing about what is possible if
we try hard

Platform Time/s #cycles/core/iteration

Tesla C1060 + CUDA
single precision

4.0 20.3

Intel i7 single core + GCC
double precision

3410 145

Intel i7 single core + ICC
double precision

2070 88

gcc 4.4.0 with -O3 option icc 11 with -fast option

03/09/10 Robert J. Harrison, UT/ORNL 11

What’s wrong on the Intel CPU?

• Is this a problem with the
– compilers,

– libraries,

– algorithm design, or

– an intrinsic failure of the Intel core?

– Looking ahead, we will conclude that the failure is
a team effort.

• We will see it is not due to
– Hardware support for special functions on the GPU

– Synergy between different GPU features, etc.

03/09/10 Robert J. Harrison, UT/ORNL 12

The poor, misunderstood x86 CPU

• It is not a sequential processor
– It is a multi-issue, out-of-order, heavily pipe-

lined device with SIMD acceleration & 4 cores

• Serial FP code will be too slow by up to ...
– 4x pipeline latency (5x for i7 multiply?)
– 2x SIMD register width (4x in single)
– 2x simultaneous + and * issue
– 4x for using only 1 out of 4 cores
– Total is 4*2*2*4 = 64 (128 in single precision)
– Need VL=80 in double precision (1 core)

• “Fat” loops need shorter VL

03/09/10 Robert J. Harrison, UT/ORNL 13

Vectorizable?

• This seems to
epitomize
sequential code
– 2 rand#, 1 exp(), and 1 if-test

• But a 30-year old Cray compiler would have
automatically vectorized this loop
– manual inline and using ranf()

• So did the CUDA compiler NVCC

• But we’re not aware of an x86 compiler that
will oblige – so we must do it by hand

void kernel(FLOAT& x, FLOAT& p) {
 FLOAT xnew = drand()*FLOAT(23.0);
 FLOAT pnew = exp(-xnew);
 if (pnew > drand()*p) {

x = xnew;
p = pnew;

 }
}

for (int i=0; i<N; i++)
 kernel(x[i], p[i]);

03/09/10 Robert J. Harrison, UT/ORNL 14

Hand vectorized kernel
• Mix of VML and hand-coded SSE assembly

double vkernel(int n, double* x, double* p) {
 static double xnew[VL] ALIGNED;
 static double pnew[VL] ALIGNED;
 static double test[VL] ALIGNED;
 vrand(n, test);
 vrand(n, xnew);
 vscale(n, -17.0, xnew, pnew);
 vexp(n, pnew, pnew);
 vmul(n, test, p, test);
 vDmask_lt(n, pnew, test, test);
 vDmerge(n, test, p, pnew, p);
 vDmerge(n, test, x, xnew, x);
 return vsum(n, x);
}

Uses CMPDD to form mask

Uses ANDPD, ANDNPD,
POR to merge vectors
under mask

vectorized version of Brent’s 48-bit LFG,

VML is missing vectorized sum, mask, merge, and fast ran# generator
VML exp is both fast and accurate in LA mode ... EP is unreliable

03/09/10 Robert J. Harrison, UT/ORNL 15

Performance prediction and measurement

• Measured is 23.5 cycles/iteration/core

• Single precision will be exactly 2x as fast since it
just involves 2x wider registers
– Did not measure since am totally fed up of writing asm

Operation Cycles

2 random values 5

1 scale 0.5

1 exp 11

1 mul 0.5

1 compare 0.5

2 merge 4

1 sum 0.5

Total 21

03/09/10 Robert J. Harrison, UT/ORNL 16

Bottom line
• Head-to-head comparison of vectorized single

precision kernels – Tesla:Intel quad core 17.6 : 1
– ~5x speed up in special function evaluation

• Intel VML takes 11 cycles/exp in dp
• GCC takes 56 in dp & 600 in sp !!

– 2x speed up by comparing single to single

– 4x speed up by using all 4 cores

• The cpu and GPU were using different random#
generators and the LCG on the GPU was bad
– A lot of state on the GPU is problematic

– Recode both to use Marsaglia complementary multiply
with carry, base 232 -1, 64-bit state, period 1e19

– Ratio is now ~12:1 (slowed the GPU)

03/09/10 Robert J. Harrison, UT/ORNL 17

Bottom line

• The optimal x86 and CUDA kernels are “identical”
– Loop over blocks to provide coarse parallelism and tile

data into registers/cache/shared memory

– Loop over threads/vector elements to provide SIMD
parallelism and hide memory latency

• Any credible architecture benchmark must back
port the CUDA kernel to the x86 & vectorize it

03/09/10 Robert J. Harrison, UT/ORNL 18

Kudos to CUDA
• SIMT + rigid register and shmem constraints

– Forces efficient program design for algorithms that fit

• NVIDIA GPGPU
– Predicated ops + SFU ease code generation

• x86 compilers ignoring 25 years of knowledge?
– 16-byte alignment problem (not in AMD SSE-128)

– Cray is developing a vectorizing x86 compiler

• The CUDA code structure is optimal even for x86

• MCDUA (Stratton and Hwu)
– Portable solution ... needs full vectorization not just

serial loop plus intrinsics

Multiresolution Adaptive
Numerical Scientific Simulation

Ariana Beste1, George I. Fann1, Robert J. Harrison1,2 ,
Rebecca Hartman-Baker1, Jun Jia1, Shinichiro Sugiki1

1Oak Ridge National Laboratory, 2University of Tennessee, Knoxville

Gregory Beylkin4, Fernando Perez4, Lucas Monzon4,
Martin Mohlenkamp5 and others

4University of Colorado, 5Ohio University

Hideo Sekino6 and Takeshi Yanai7

6
Toyohashi University of Technology, 7Institute for Molecular Science, Okazaki

harrisonrj@ornl.gov

03/09/10 Robert J. Harrison, UT/ORNL 21

Multiresolution chemistry objectives
• Scaling to 1+M processors ASAP
• Complete elimination of the basis error

– One-electron models (e.g., HF, DFT)
– Pair models (e.g., MP2, CCSD, …)

• Correct scaling of cost with system size
• General approach

– Readily accessible by students and researchers
– Higher level of composition
– Direct computation of chemical energy differences

• New computational approaches
– Fast algorithms with guaranteed precision

MADNESS 2009 22

Ariana Beste Hideo Sekino Robert Harrison

Gregory Beylkin

Eduard Valeyev

Judy Hill
George Fann

Paul Sutter
Matt Reuter

Alvaro Vasquez

Jun Jia
Tetsuya Kato

Scott Thornton

Rebecca
Hartman-Baker

Nicholas Vence
Takahiro Ii

Essential techniques for fast
computation

• Multiresolution

• Low-separation
rank

• Low-operator
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0V 1−V 0 ⋯ V n−V n−1 

f x1, , xn=∑
l=1

M

 l∏
i=1

d

f i
 l 
 xiO 

∥ f il ∥2=1 l0

A=∑
=1

r

u v
TO 

0 v
T v=u

T u=

03/09/10 Robert J. Harrison, UT/ORNL 24

03/09/10 Robert J. Harrison, UT/ORNL 25

High-level composition
• Close to the physics

operatorT op = CoulombOperator(k, rlo, thresh);

functionT rho = psi*psi;

double twoe = inner(apply(op,rho),rho);

double pe = 2.0*inner(Vnuc*psi,psi);

double ke = 0.0;

for (int axis=0; axis<3; axis++) {

 functionT dpsi = diff(psi,axis);

 ke += inner(dpsi,dpsi);

}

double energy = ke + pe + twoe;

E=〈∣−
1
2
∇

2
V∣〉∫

2
x 

1
∣x− y∣


2
 y dx dy

03/09/10 Robert J. Harrison, UT/ORNL 26

High-level composition

• Express ALLALL available parallelism without
burdening programmer
– Internally, MADNESS is looking after data and

placement and scheduling of operations on
individual functions

– Programmer must express parallelism over
multiple functions and operators

• But is not responsible for scheduling or placement

03/09/10 Robert J. Harrison, UT/ORNL 27

MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks being considered for multicore

03/09/10 Robert J. Harrison, UT/ORNL 28

Runtime Objectives
● Scalability to 1+M processors ASAP
● Runtime responsible for

● scheduling and placement,
● managing data dependencies,
● hiding latency, and
● Medium to coarse grain concurrency

● Compatible with existing models
● MPI, Global Arrays

● Borrow successful concepts from
Cilk, Charm++, Python

● Anticipating next gen. languages

Key elements
● Futures for hiding latency and
automating dependency management

● Global names and name spaces

● Non-process centric computing
● One-sided messaging between objects
● Retain place=process for MPI/GA legacy

● Dynamic load balancing
● Data redistribution, work stealing, randomization

03/09/10 Robert J. Harrison, UT/ORNL 30

Multi-threaded architecture

RMI Server
(MPI or portals)

Incoming active
messages

Task dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active messages

Work stealing

Task attributes indicate #threads, if it
can run on host, accelerator, or either
... full dynamic load balance

03/09/10 Robert J. Harrison, UT/ORNL 31

Computational kernels

• Discontinuous spectral element
– Cache friendly, vectorizable kernels
– In each “box” a tensor product of coefficients
– Most operations are small matrix-multiplication

– Typical matrix dimensions are 2 to 30
– E.g., (20,400)T * (20,20)

r i ' j ' k '=∑
i j k

si j k c i i ' c j j ' ck k '=∑
k ∑j ∑i s i j k ci i ' c j j ' ck k '

⇒ r= sT cT c T c

03/09/10 Robert J. Harrison, UT/ORNL 32

Ratio of Speeds of MKL, Goto, ATLAS
to MTXMQ on Intel Xeon 5355

for (20,400)T*(20,n).

n MKL Goto ATLAS n MKL Goto ATLAS

2 6.25 4.1667 5 16 0.8966 1.2581 2.0708

4 3.1042 3.6341 4.6563 18 1.7763 1.3636 2.4545

6 4.375 2.625 5.122 20 0.9556 1.2727 2.6168

8 1.3132 2.0427 5.1957 22 1.6416 1.2968 2.7308

10 2.7368 1.9549 5.3061 24 0.9638 1.2208 1.9664

12 1.0605 1.5843 2.4352 26 1.5337 1.2814 2.1295

14 2.0323 1.4737 2.1356 28 0.8411 1.0588 2.0301

03/09/10 Robert J. Harrison, UT/ORNL 33

XT5 single core FLOPs/cycle

(nj, ni)T*(nj,nk)

ni nj nk MTXMQ ACML

400 2 20 2.55 0.95

400 4 20 2.62 1.50

400 6 20 2.60 1.79

400 8 20 2.56 2.02

400 10 20 2.58 2.12

400 12 20 2.64 2.27

400 14 20 2.90 2.35

400 16 20 2.80 2.46

400 18 20 2.74 2.49

400 20 20 2.89 2.58

nested transform (nj, ni)T*(nj,nk)

ni nj nk MTXMQ ACML

4 2 2 0.10 0.07

16 4 4 1.04 0.51

36 6 6 1.74 0.99

64 8 8 2.33 1.56

100 10 10 2.61 1.80

144 12 12 2.69 2.12

196 14 14 2.94 2.17

256 16 16 2.97 2.41

324 18 18 2.93 2.38

400 20 20 3.03 2.49

484 22 22 3.01 2.52

576 24 24 3.09 2.73

676 26 26 3.02 2.73

784 28 28 2.87 2.87

900 30 30 2.88 2.81L2 cache is 512Kb = 2*32^3 doubles
- hence expect good multi-core scaling
- measured linear speed up all 8 cores

03/09/10 Robert J. Harrison, UT/ORNL 34

Initial results C1060 Single MP
 MTxM [k,k2]Tx[k,k]

0 8 16 24 32
0.00

0.50

1.00

1.50

2.00

2.50

GFLOP/s

k

d.p.
GFLOP/s

03/09/10 Robert J. Harrison, UT/ORNL 35

Combine multiple small kernels
• Task queue implemented on Tesla

– Each task targets 1 MP (1 multi-threaded block)
– In principle C++ templates should work, but ??
– Overlap data transfer with compute
– Looking forward to next gen. card rumored to

have more MIMD capabilities

• E.g., model kernel of
convolution operator
– 60 GF/s double precision ([32,1024]*[32,32]))
– But this is neglecting many optimizations ...

currently projecting perhaps 30+% of peak.

r=∑


 sT X  
T
Y 

T

Z  

03/09/10 Robert J. Harrison, UT/ORNL 36

Acknowledgements
• Our work on accelerators is supported by the National

Science Foundation, grant CHE 0625598

– Cyber-infrastructure and Research Facilities: Chemical
Computations on Future High-end Computers

• Work on MADNESS and NWChem is supported by the U.S.
Department of Energy, the divisions of Advanced Scientific
Computing Research and Basic Energy Science, Office of
Science, under contract DE-AC05-00OR22725 with Oak
Ridge National Laboratory

• This research was performed in part using resources of the
National Center for Computational Sciences at Oak Ridge
National Laboratory under contract DE-AC05-00OR22725

• Greg Peterson @ UT EECS and his talented students
Akila Gothandaraman and Rick Weber

