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LAMMPS 
(Large-scale Atomic/Molecular Massively Parallel Simulator) 

http://lammps.sandia.gov 

  Classical MD code. 
  Particles interact with neighbors within some cutoff 
  Gradient of the potential energy surface gives forces 
  Simulate by integrating equations of motion at timestep 

  Open source, highly portable C++. 
  Freely available for download under GPL. 
  Easy to download, install, and run. 
  Well documented. 
  Easy to modify or extend with new features and functionality. 
  Active user’s e-mail list with over 650 subscribers. 
  Since Sept. 2004: over 50k downloads, grown from 53 to 175 kloc. 
  Spatial-decomposition of simulation domain for parallelism. 
  Energy minimization via conjugate-gradient relaxation. 
  Radiation damage and two temperature model (TTM) simulations. 
  Atomistic, mesoscale, and coarse-grain simulations. 
  Variety of potentials (including many-body and coarse-grain). 
  Variety of  boundary conditions, constraints, etc. 



Extending LAMMPS via 
Styles 

  In hindsight, this is best feature of  LAMMPS 
 80% of  code is “extensions” via styles 
 only 35K of  175K lines is core of  LAMMPS 

  Easy for us and others to add new features via 14 “styles” 
 new particle types = atom style 
 new force fields = pair style, bond style, angle style, dihedral style, improper style 
 new long range = kspace style 
 new minimizer = min style 
 new geometric region = region style 
 new output = dump style 
 new integrator = integrate style  
 new computations = compute style (global, per-atom, local) 
 new fix = fix style = BC, constraint, time integration, ... 
 new input command = command style = read_data, velocity, run, … 

  Enabled by C++ 
 virtual parent class for all styles, e.g. pair potentials 
 defines interface the feature must provide 
 compute(), init(), coeff(), restart(), etc 



GPU-LAMMPS strategy 
  Enable LAMMPS to run efficiently on future 

CPU-based clusters that have GPU 
accelerators. 

  Not aiming for running on a single GPU. 

  Not aiming to rewrite all of  LAMMPS in 
CUDA. 

  Rewrite the most compute-intensive LAMMPS 
kernels in CUDA. 

  At each time-step, ship particle positions 
from CPU to GPU, compute forces on the 
GPU, and then ship forces back to the CPU. 

  Domain decomposition across processes; 
force decomposition on GPU 
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Example 
Aspherical Particle Simulation 



Why Aspherical Particles? 
  Particles in nature and 

manufacturing often have 
highly irregular shapes 

  Liquid crystal simulations 

  Coarse Graining 

  Majority of  computational 
particle mechanics (CPM) 
simulators treat only 
spherical particles 

  Need a parallel and 
scalable implementation 
to attack realistic 
problems (LAMMPS) 



Gay-Berne Potential 

  Single-site potential 
for biaxial ellipsoids 

  h is the distance of  
closest approach 

  S is the shape matrix 

  The E matrix 
characterizes the 
relative well depths 
of  side-to-side, face-
to-face, and end-to 
end interactions 

  ~30 times the cost of  
an LJ interaction 
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Liquid Crystal Simulations 



Accelerated Gay-Berne in 
LAMMPS 

  Good candidate for GPU acceleration 
  Very expensive force calculation 

  Available in the GPU package (make yes-asphere 
yes-gpu) 
  Can run on multiple GPUs on a single node or in a 

cluster 

  Multiple precision options: Single, Single/Double, and 
Double 

  Can simulate millions of  particles per GPU 



Algorithm 
  1. Copy atom positions and quaternions to device 

  2. Did reneighbor occur ? copy neighbor list to device 

  3. Call neighbor_pack kernel 
  1 Atom per GPU Core 
  Perform cutoff  check for all neighbors and store for coalesced access 
  This limits thread divergence for the relatively expensive force 

computation 

  4. Call force computation kernel 
  1 Atom per GPU Core 

  Use full neighbor lists (double the amount of  computations versus the 
CPU) 
  No collisions with this approach 

  Compute force, torque, energies, and virial terms 

  5. Copy forces, torques, energies, and virial terms to host 
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Simulation Time Breakdown 
32K Particles, Cutoff=4, 1 Tesla C1060 
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HPC Comparison 

  A single 4-GPU accelerated node can run a simulation in the same 
amount of  time as a 256-core simulation on Thunderbird or Glory. 

  The power requirements for the GPU accelerated run were <1.2 kW 
versus 11.2 kW on Glory or 44.8 kW on Thunderbird 

0.01 

0.1 

1 

10 

100 

0 100000 200000 300000 400000 500000 600000 

T
im

es
te

p
s/

se
c 

Particles 

Biaxial Ellipsoid Simulations 
c=4  

TBIRD-256 

GPU-4 

GLORY-256 

GPU-3 

TBIRD-128 

GPU-2 

GLORY-128 

GPU-1 

GLORY-16 

TBIRD-2 

TBIRD-1 

GLORY-1 



Coding Issues 
  Difficult to keep force computation in registers 

  Had to manually scope variables to fit single precision in 
registers 

  Double precision goes to global memory 

  Had to manually unroll Gaussian elimination loop 
  Compiler could not figure out array pointer arithmetic 

  Complicated memory management can lead to separate 
implementations 
  e.g. what if  a given simulation has atom type constants 

that do not fit in shared memory? 
  Many GPU implementations are “benchmark codes” meant 

for publication, not real use 



Alternative Algorithms 
  Forces divided evenly among GPU cores (as opposed to per atom) 

  Need atomic operations to avoid collisions 
  No floating point atomic operations on current hardware 
  Slower for large simulations 
  >20x speedup for a 128 particl simulation with Gay-Berne (<1 particle per core) 

  Neighbor list computation on the GPU 
  For Lennard-Jones, the simulation time is halved using a GPU cell list 

implementation 

  Concurrent CPU execution 
  Multithreaded force decomposition (OpenMP) 
  Domain decomposition (separate MPI process for GPU and CPU computations) 
  Multiple threads/processes utilizing same GPU 

  For Gay-Berne, the upper-bound for concurrent execution performance gains is 
small 
  Overhead (full neighbor lists, thread creation, domain sizes) 

  For some potentials, concurrent execution may be needed in order to achieve 
good speedups  



Future Work 
  Currently available in the main LAMMPS 

distribution 
  Lennard-Jones and Gay-Berne 

  Adding more potentials 
  3-body, MEAM, etc. 

  Long range electrostatics 



Porting LAMMPS to GPUs 
  Contact Paul Crozier (pscrozi@sandia.gov) 

  Still largely a research effort 

Marc Adams (Nvidia) 
Pratul Agarwal (ORNL) 
Sarah Anderson (Cray) 
Mike Brown (Sandia) 
Paul Crozier (Sandia) 
Massimiliano Fatica (Nvidia) 
Scott Hampton (ORNL) 
Ricky Kendall (ORNL) 
Hyesoon Kim (Ga Tech) 

Axel Kohlmeyer (Temple) 
Doug Kothe (ORNL) 
Scott LeGrand (Nvidia) 

Ben Levine (Temple) 
Christian Mueller (UTI Germany) 
Steve Plimpton (Sandia) 
Duncan Poole (Nvidia) 
Steve Poole (ORNL) 
Jason Sanchez (RPI) 
Arnold Tharrington (ORNL) 
John Turner (ORNL) 
Peng Wang (Nvidia) 

Lars Winterfeld (UTI Germany) 
Andrew Zonenberg (RPI) 



OpenCL, CUDA-Driver, 
CUDA-Runtime? 

  OpenCL offers a general API that is supported by many 
vendors and allows the potential to run kernels 
efficiently on the CPU in addition to coprocessor 
devices.  

  CUDA Driver is a more mature GPGPU programming API 
with stable compilers, freedom in the choice of  host 
compilers, and can potentially generate the most 
efficient code for Nvidia devices.  

  CUDA Runtime offers a more succinct API and support 
for GPU code integrated with host code. 

  Geryon – Software library that allows a single code to 
compile using any of the 3 APIs. Change namespace to 
change API. 

http://www.cs.sandia.gov/~wmbrown/geryon 



Questions 


