
Porting LAMMPS to
GPUs

W. Michael Brown, Scott Hampton, Pratul Agarwal, Peng
Wang, Paul Crozier, Steve Plimpton

Tuesday, March 9, 2010

LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator)

http://lammps.sandia.gov

  Classical MD code.
  Particles interact with neighbors within some cutoff
  Gradient of the potential energy surface gives forces
  Simulate by integrating equations of motion at timestep

  Open source, highly portable C++.
  Freely available for download under GPL.
  Easy to download, install, and run.
  Well documented.
  Easy to modify or extend with new features and functionality.
  Active user’s e-mail list with over 650 subscribers.
  Since Sept. 2004: over 50k downloads, grown from 53 to 175 kloc.
  Spatial-decomposition of simulation domain for parallelism.
  Energy minimization via conjugate-gradient relaxation.
  Radiation damage and two temperature model (TTM) simulations.
  Atomistic, mesoscale, and coarse-grain simulations.
  Variety of potentials (including many-body and coarse-grain).
  Variety of boundary conditions, constraints, etc.

Extending LAMMPS via
Styles

  In hindsight, this is best feature of LAMMPS
 80% of code is “extensions” via styles
 only 35K of 175K lines is core of LAMMPS

  Easy for us and others to add new features via 14 “styles”
 new particle types = atom style
 new force fields = pair style, bond style, angle style, dihedral style, improper style
 new long range = kspace style
 new minimizer = min style
 new geometric region = region style
 new output = dump style
 new integrator = integrate style
 new computations = compute style (global, per-atom, local)
 new fix = fix style = BC, constraint, time integration, ...
 new input command = command style = read_data, velocity, run, …

  Enabled by C++
 virtual parent class for all styles, e.g. pair potentials
 defines interface the feature must provide
 compute(), init(), coeff(), restart(), etc

GPU-LAMMPS strategy
  Enable LAMMPS to run efficiently on future

CPU-based clusters that have GPU
accelerators.

  Not aiming for running on a single GPU.

  Not aiming to rewrite all of LAMMPS in
CUDA.

  Rewrite the most compute-intensive LAMMPS
kernels in CUDA.

  At each time-step, ship particle positions
from CPU to GPU, compute forces on the
GPU, and then ship forces back to the CPU.

  Domain decomposition across processes;
force decomposition on GPU

CPU
Most of

LAMMPS code

GPU
Compute-
intensive
kernels

p
osition

s

fo
rc

es
 CPU-GPU

communication
each

time-step

(the rest of the CPU/GPU cluster)

Inter-node MPI
communication

Example
Aspherical Particle Simulation

Why Aspherical Particles?
  Particles in nature and

manufacturing often have
highly irregular shapes

  Liquid crystal simulations

  Coarse Graining

  Majority of computational
particle mechanics (CPM)
simulators treat only
spherical particles

  Need a parallel and
scalable implementation
to attack realistic
problems (LAMMPS)

Gay-Berne Potential

  Single-site potential
for biaxial ellipsoids

  h is the distance of
closest approach

  S is the shape matrix

  The E matrix
characterizes the
relative well depths
of side-to-side, face-
to-face, and end-to
end interactions

  ~30 times the cost of
an LJ interaction

€

U = Ur A1,A 2,r12()η12 A1,A 2()χ12 A1,A 2, ˆ r 12()

Ur = 4ε σ
h12 + γσ

⎛

⎝
⎜

⎞

⎠
⎟

12

−
σ

h12 + γσ

⎛

⎝
⎜

⎞

⎠
⎟

6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

η12 =
2s1s2

det A1
TS1

2A1 + A 2
TS2

2A 2[]
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

υ / 2

s = aibi + cici[] aibi[]1/ 2

χ12 = 2ˆ r 12
T A1

TE1A1 + A 2
TE2A 2()−1 ˆ r 12[]

µ

Liquid Crystal Simulations

Accelerated Gay-Berne in
LAMMPS

  Good candidate for GPU acceleration
  Very expensive force calculation

  Available in the GPU package (make yes-asphere
yes-gpu)
  Can run on multiple GPUs on a single node or in a

cluster

  Multiple precision options: Single, Single/Double, and
Double

  Can simulate millions of particles per GPU

Algorithm
  1. Copy atom positions and quaternions to device

  2. Did reneighbor occur ? copy neighbor list to device

  3. Call neighbor_pack kernel
  1 Atom per GPU Core
  Perform cutoff check for all neighbors and store for coalesced access
  This limits thread divergence for the relatively expensive force

computation

  4. Call force computation kernel
  1 Atom per GPU Core

  Use full neighbor lists (double the amount of computations versus the
CPU)
  No collisions with this approach

  Compute force, torque, energies, and virial terms

  5. Copy forces, torques, energies, and virial terms to host

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

1 2 3 4 1 2 3 4

c=4 c=7

56.8

108.8

145.2

190.2

75.2

145.6
175.7

235.0

85.0

163.0

217.4

284.8

115.3

223.2

269.4

360.4

GPGPU Times Speedup vs 1 Core
(c=cutoff, 32768 particles)

Thunderbird Glory

GPGPU: 1, 2, 3, or 4 NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 1 core of Dual 3.6 GHz Intel EM64T processors
Glory: 1 core of Quad Socket/Quad Core 2.2 GHz AMD

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 1 2 3 4

c=4 c=7

28.7

55.1

73.4

96.2

38.4

74.3

89.7

120.0

4.2
8.0 10.6 13.9

5.4
10.4 12.6 16.8

GPGPU Times Speedup vs 1 Node
(c=cutoff, 32768 particles)

Thunderbird Glory

GPGPU: 1, 2, 3, or NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 2 procs, Dual 3.6 GHz Intel EM64T processors
Glory: 16 procs, Quad Socket/Quad Core 2.2 GHz AMD

52.4

55.6 56.8
58.1

59.7
62.3 62.7

50.4

53.8
55.5 56.5

57.8

60.8 60.9

11.1 12.2 13.0 13.5 13.7 14.0 14.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 100000 200000 300000 400000 500000 600000
Particles

Times Speedup vs 1 Core
(c=4, 1 Tesla C1060, 3.6 GHz Intel EM64T processor)

Single Mixed Double

Simulation Time Breakdown
32K Particles, Cutoff=4, 1 Tesla C1060

3% 0%

24%

37%

1%

1%

11%

23%

Atom Copy

Neighbor Copy

Neighbor Pack

Force Calc

Answer Copy

Other

CPU Neighbor

CPU Other

HPC Comparison

  A single 4-GPU accelerated node can run a simulation in the same
amount of time as a 256-core simulation on Thunderbird or Glory.

  The power requirements for the GPU accelerated run were <1.2 kW
versus 11.2 kW on Glory or 44.8 kW on Thunderbird

0.01

0.1

1

10

100

0 100000 200000 300000 400000 500000 600000

T
im

es
te

p
s/

se
c

Particles

Biaxial Ellipsoid Simulations
c=4

TBIRD-256

GPU-4

GLORY-256

GPU-3

TBIRD-128

GPU-2

GLORY-128

GPU-1

GLORY-16

TBIRD-2

TBIRD-1

GLORY-1

Coding Issues
  Difficult to keep force computation in registers

  Had to manually scope variables to fit single precision in
registers

  Double precision goes to global memory

  Had to manually unroll Gaussian elimination loop
  Compiler could not figure out array pointer arithmetic

  Complicated memory management can lead to separate
implementations
  e.g. what if a given simulation has atom type constants

that do not fit in shared memory?
  Many GPU implementations are “benchmark codes” meant

for publication, not real use

Alternative Algorithms
  Forces divided evenly among GPU cores (as opposed to per atom)

  Need atomic operations to avoid collisions
  No floating point atomic operations on current hardware
  Slower for large simulations
  >20x speedup for a 128 particl simulation with Gay-Berne (<1 particle per core)

  Neighbor list computation on the GPU
  For Lennard-Jones, the simulation time is halved using a GPU cell list

implementation

  Concurrent CPU execution
  Multithreaded force decomposition (OpenMP)
  Domain decomposition (separate MPI process for GPU and CPU computations)
  Multiple threads/processes utilizing same GPU

  For Gay-Berne, the upper-bound for concurrent execution performance gains is
small
  Overhead (full neighbor lists, thread creation, domain sizes)

  For some potentials, concurrent execution may be needed in order to achieve
good speedups

Future Work
  Currently available in the main LAMMPS

distribution
  Lennard-Jones and Gay-Berne

  Adding more potentials
  3-body, MEAM, etc.

  Long range electrostatics

Porting LAMMPS to GPUs
  Contact Paul Crozier (pscrozi@sandia.gov)

  Still largely a research effort

Marc Adams (Nvidia)
Pratul Agarwal (ORNL)
Sarah Anderson (Cray)
Mike Brown (Sandia)
Paul Crozier (Sandia)
Massimiliano Fatica (Nvidia)
Scott Hampton (ORNL)
Ricky Kendall (ORNL)
Hyesoon Kim (Ga Tech)

Axel Kohlmeyer (Temple)
Doug Kothe (ORNL)
Scott LeGrand (Nvidia)

Ben Levine (Temple)
Christian Mueller (UTI Germany)
Steve Plimpton (Sandia)
Duncan Poole (Nvidia)
Steve Poole (ORNL)
Jason Sanchez (RPI)
Arnold Tharrington (ORNL)
John Turner (ORNL)
Peng Wang (Nvidia)

Lars Winterfeld (UTI Germany)
Andrew Zonenberg (RPI)

OpenCL, CUDA-Driver,
CUDA-Runtime?

  OpenCL offers a general API that is supported by many
vendors and allows the potential to run kernels
efficiently on the CPU in addition to coprocessor
devices.

  CUDA Driver is a more mature GPGPU programming API
with stable compilers, freedom in the choice of host
compilers, and can potentially generate the most
efficient code for Nvidia devices.

  CUDA Runtime offers a more succinct API and support
for GPU code integrated with host code.

  Geryon – Software library that allows a single code to
compile using any of the 3 APIs. Change namespace to
change API.

http://www.cs.sandia.gov/~wmbrown/geryon

Questions

