
Scaling System Software to Exascale

Ron Brightwell
Scalable System Software Department

Sandia National Laboratories
rbbrigh@sandia govrbbrigh@sandia.gov

SOS-14
March 10 2010March 10, 2010

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Exascale Challenge for Operating Systems

Programming/Execution Model

MPI+OpenMP MPI+PGAS

MPI

p MPI+PGAS
MPI+CUDA

MPI+OpenCL

ParalleX
Chapel

PGAS
Ope C

Operating/Runtime System

Architecture
Hybrid Multi-CoreNon-Cache-Coherent Many-Core

Global Address SpaceDistributed Memory

Homogeneous Multithreaded

p

What’s the node architecture?What s the node architecture?

Intel’s SCC

What are the system software challenges?What are the system software challenges?

Plenty of Material to Choose From

PDE’s and System Software

John Bell and Ron Brightwell

Cross-Cutting Technologies for Computing at the
Exascale

February 2-5, 2010

Network Topology

• PDE characteristic
– Domain decomposition with nearest neighbor communication
– Elliptic requires nonlocal small communicationElliptic requires nonlocal small communication

• Topology can be dynamic
– System issues

Algorithm issues– Algorithm issues
• Two approaches

– Expose network topology to the application
OS– Expose problem connectivity to the OS

Memory hierarchies and cache coherence

• Lots of parallelism within a node
– Easily identify 1000 way fine grained parallelism

• Hierarchical model often a win• Hierarchical model often a win
– AMR
– Linear solvers

Application needs to express• Application needs to express
– Spatial locality
– Temporal locality
– Liveliness

• Scratchpad can be effective for managing locality

Asynchronous messaging and threads

• Low cost mechanism for thread creation / destruction
• Global name space?
• What is the appropriate threading model?• What is the appropriate threading model?

– Over committing
– Dynamic threads

H t h– How to manage memory coherence
• Threads should be first class objects

Debugging and fault tolerance

• How do you tell the difference from between a bug and a fault?
– Bugs and system faults may will look identical

• How hard is it to develop criteria for correctness in a function /
subroutine call

• Need a tool to localize impact of errors

Heterogeneity

• Moving to simplified homogenous cores appears to be ok
– At least need to support conditionals

• Can leverage multiprecision in some parts of applications
– Solvers

Outline Co-design Opportunities
Between Discrete Math and System SoftwareBetween Discrete Math and System Software

• Memory Management
– Apps and System software researchers want the OS to handle it
– Algorithm and Compiler researchers want OS hooks to manage memory

themselves. Co-design needed to define API and scope of control
• Resource Management

– Dynamic load balancing
– Scheduling work on heterogeneous nodes
– Dynamically changing #processors (energy efficiency, faults, app

needs)
– Co-design opportunity is use of graph algorithms to schedule tasks

memory efficient, fast, incremental update, verses overhead of
imbalance

• Simulation
– Co-design requires discrete event simulation
– Discrete math can help with the development of the simulator
– And needs the simulator for memory management and resource

management studies

What system software functionality is required by
applications at the Exascale?

• Need Adaptive Runtime
– Adapt to the problem evolution
– Adapt to faults and in general changing system configurationAdapt to faults and in general changing system configuration

• Resource Management
– Ability to schedule resources for power consumption
– Allocate the whole 20MW for data movementAllocate the whole 20MW for data movement
– Request to be able to allocate system by power (J/wk) vs. (hrs/yr)

• I/O
MPI IO efficient handling of sparse segments (zero length segments)– MPI-IO efficient handling of sparse segments (zero length segments)

– Irregular datastreams in HDF or equivalent
• Memory management

Ability for user to define data that is guaranteed uncorrupted– Ability for user to define data that is guaranteed uncorrupted
• Archive data path guarantee

– Send data to archive and read it back unchanged

Outline Co-design Opportunities
Between PDE II and System SoftwareBetween PDE II and System Software

• Fault tolerance
– is the biggest issue from the application user, would like systems software to

deal with this as much as possible
– Need to define standard interfaces to get information (notification)
– Local recovery (algorithms have small checkpoints)
– API of Publish/subscribe component (automatically run in user space with

app)
• Memory management/hierarchies

– are a second priority – automatic load balancing is a lower priority since we
already do much of that ourselves

• Autotuning
– Discussion of swapping algorithms for different situations
– Automatic code generation optimized for particular system configuration

(dynamic)

What system software functionality is required by
applications at the Exascale?

• Debug Tool
– On node, modest size system, full size (high level msg only)
– How find large scale bugs? Long run bugs?How find large scale bugs? Long run bugs?
– Sometimes used to debug science

• Performance Tool
– Holistic performance measure (node-system) w/ integrated perf modelHolistic performance measure (node system) w/ integrated perf model

• File system and I/O
– Currently spending 1/3 of our allocation doing I/O, currently use 10% of the

nodes just for check pointing, the rest of the nodes send data to them andnodes just for check pointing, the rest of the nodes send data to them and
get back to work

– File system scalability and robustness (concern)
– I/O will be different than we do now – more in situ analysis to reduce datay

• System dynamic (configuration/performance/faults) information space
– Can be queried by tools, apps, system layers

Not-in-same-computation (simulation)
processing

• In-situ analysis (OS issue: multitasking). What is the programming
model and what is the OS mechanism that separates the analysis frommodel and what is the OS mechanism that separates the analysis from
the simulation in a way that makes sense? Multiple possibilities:
– As part of the same of computation.
– Shared address space mappingShared address space mapping.

• Computation near the I/O. The analysis does not operate necessarily in
the same cluster but it operates on the same cluster storage. There
are many issues:are many issues:
– Performance isolation: (what the visualization does cannot cause

simulation to slow down).
– Partitioning visualization to execute where the data is.Partitioning visualization to execute where the data is.

NVRAM

• For data analysis there will be computations that are not sequential on
huge data sets.

• For those if the NVRAM is there for checkpointing we would like theFor those, if the NVRAM is there for checkpointing, we would like the
system software to expose NVRAM.

• Attraction: NVRAM has 2 orders of magnitude faster access compared
to diskto disk.

• We need to identify an appropriate programming model and services
provided by the OS, while also ensuring checkpoint success.

Seamless Memory/Storage usage?

• Depending on the size of data, we can either
– Do the analysis in RAM of visualization node if it fits in memory,
– Or move the computation to storageOr, move the computation to storage.

• How do we manage this?
– This is a programming model challenge and system software challenge.

It could be easier for the OS to explore solutions if the data fits in memory– It could be easier for the OS to explore solutions if the data fits in memory

System Software for Applications
Software Stack Components for Developing and Running Jobs

• Execution
– Operating system
– Runtime systemRuntime system
– File system and parallel I/O
– Communication (MPI, SHMEM, etc.)

Fault detection notification recovery– Fault detection, notification, recovery
• Development

– Compilers
D b– Debuggers

– Performance tools
– Math libraries

• Knowledge discovery
– Data analysis
– Visualization
– Workflows

Many Aspects of System Software

There is managing users, and maintaining the system

Resource & Queue
Management

Accounting
& user mgmt

Allocation
management

& user mgmt

Fault
Tolerance

of system itself

Security

System
B ild &

System
Monitoring

Build &
ConfigureJob management

People From Whom I Stole Slides

• Jason Howard (Intel)
• John Shalf (LBL)
• David Brown (LLNL)• David Brown (LLNL)
• John Bell (LBL)
• Al Geist (ORNL)
• Mihai Anitescu (ANL)

