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Challenges Facing Scalable 
Applications: 
Where are the ‘gaps’ between potential and achieved performance?

 List some explicit examples that drive the discussion.
 What are the primary bottlenecks facing computational 

scientists?
 To what areas can a tightly integrated Math/CS effort 

contribute?



Challenges facing scalable 
applications

 Modeling and Simulation at the 
Exascale for Energy and 
Environment
– www.sc.doe.gov/ascr
– Program Documents

 Scientific Application 
Requirements for Leadership 
Computing at the Exascale
– nccs.gov
– Media Center → NCCS Reports
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Modeling and Simulation at the 
Exascale for Energy and Environment

 Town Halls
– Berkeley, April 17-18, 2007
– Oak Ridge, May 17-18, 2007
– Argonne, May 31-June 1, 2007

 Document
– Climate
– Combustion
– Fusion
– Solar
– Fission
– Biology
– Socioeconomic modeling
– Astrophysics
– Math and algorithms
– Software
– Hardware
– Cyberinfrastructure
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Climate

 Quantification and reduction of uncertainty
 Attribution of errors
 Derivation of parameterizations
 Replacement of parameterizations with direct simulation
 Rapid software development
 Software verification

– Unit testing
– Diagnostics

 Assimilation of big data volumes
 Analysis tools for big data volumes
 Parallelism and scalability
 Unstructured and adaptive grids in the ocean
 "closer collaboration with applied mathematicians"
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Combustion

 Uncertainty quantification for validation
 Scalable nonlinear solvers for implicit systems
 Load balancing for heterogenous physics
 Discretization methods for basic physics and coupling
 Unstructured, adaptive, sometimes-moving meshes
 Software modularity
 Portable, scalable performance
 Managing huge data volumes
 Extracting knowledge from simulation data
 Coupling simulation data to design optimization
 Collaborative tools for sharing methods and data
 "key combustion design issues will require a collaboration of 

computer scientists, applied mathematicians, and combustion 
scientists"
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Fusion

 Mathematical algorithms for coupling models across wide 
ranges of space and time scales

 Reduced models based on DNS
 Diagnostics and data management for development and 

debugging of coupled models
 Data analysis and visualization of large data volumes
 Algorithms with hierarchical parallelism
 Multi-core compilers
 Runtime systems for efficient fine-grain parallelism
 Hybrid MPI and UPC
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Solar energy (materials science 
and nano-science)

 Linear-scaling algorithms for chemical structure
 Integrated simulations of complex systems
 Many-particle systems for long simulations
 Modular, composable software in a common framework
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Fission

 Requirements driven by industry and regulatory agencies
 Sensitivity and uncertainty analysis
 Verification and validation
 Fully coupled, nonlinearly consistent multi-physics time 

integration
 Generalized interpolation, integration, extrapolation
 Compatible geometry representations
 Milliseconds to years
 Molecules to full fuel cycle
 Workstations to extreme scale
 Interactive selection of models, levels of detail, and breadth of 

scope
 "While there have been many advances in fundamental enabling 

technologies in mathematics and computer science in the past, 
additional research and development will undoubtedly be 
required to tackle a problem of this scale."
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Biology

 Long simulated times
 Multi-scale modeling from molecules to ecosystems
 Reusable software components
 Large, rich databases
 Integer computations
 Shared-memory programming models
 "design of the tools and their application requires both 

biologists and mathematicians"
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Socioeconomic Modeling

 Uncertainty quantification in complex coupled models
 Validation of individual models and large model systems
 Large-scale nonlinear optimization
 Parameter-sweep methods for high dimensions
 Quality control of diverse data sources
 Data search and summary
 Fast comparison of measured and computed data
 Scalable statistical methods
 Physical constraints on "induced technical change"
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Astrophysics

 Long simulation times
 Higher resolution
 Memory-efficient algorithms
 Implicit methods
 Adaptive mesh refinement 
 Dynamic load balancing
 Fault-tolerant algorithms
 Management and analysis of huge data volumes
 Scalable solvers for elliptic systems
 "there are no obvious bottlenecks at present that suggest that 

an entirely new set of codes will have to be deployed"
 "of primary importance to the computational astrophysics 

community will be collaboration with the applied mathematics 
community with an eye toward porting existing methods and 
codes to exascale platforms"
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Math and Algorithms (1 of 2)

 Fully intrusive uncertainty quantification
 Adjoint methods for uncertainty quantification and control
 Formalized confidence measures for decision making
 Implicit methods + uncertainty quantification + integration-error 

control and estimation
 JFNK methods + automated adjoint models
 Preconditioners

– Physics based
– Approximate block factorization
– Multi-level, including algebraic multi-grid

 Eigensolvers
 Mesh generation and adaptation
 Optimal rebalancing for AMR
 High-order finite-element methods 
 System-of-systems approaches
 Hybrid deterministic/probabilistic approaches
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Math and Algorithms (2 of 2)

 Block iterative methods for multiple right-hand sides
 Out-of-core direct solvers
 Solvers for sparse indefinite systems
 Inexact subsystem solvers for nonlinear optimization
 Branch-and-cut solvers for discrete nonlinear optimization
 Sampling methods for high-dimensional spaces
 Combinatorial and discrete algorithms
 High-precision arithmetic
 Scalable data analysis
 Scalable, adaptive agent-based modeling
 Robust abstraction layers for portable performance
 Software engineering
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Software

 High-level domain-specific languages
 Modular, composable software components
 Model coupling through automated workflows
 Formal verification methods
 Fault-detection algorithms
 Automatic management of storage hierarchies
 Knowledge discovery

– Integrated into simulations
– Integrated into data managment
– Of software performance

15



Summary

 Big solvers
 Big data
 Big software
 Long times
 Uncertainty, sensitivity, verification, and validation
 Multi-scale in space and time
 Hierarchical parallelism 
 Design optimization
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Scientific Application Requirements for 
Leadership Computing at the Exascale

 Survey of leading NCCS users: 
"Anticipating Requirements for Leadership 
Computing in the Next Decade"
– Science drivers and urgent problems
– Looming computational challenges
– Sample science objectives and outcomes
– Improvement goals for science-simulation fidelity
– Possible changes in physical model attributes
– Major software-development projects
– Major algorithm changes
– Libraries and development tools
– Priorities for system attributes
– Workflow changes
– Disruptive technologies

 Summary document
– 6. Accelerated Development and Readiness
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Accelerated Development and 
Readiness

 Automated diagnostics
 Hardware latency
 Hierarchical algorithms
 Parallel programming models
 Solver technology and innovative solution techniques
 Accelerated time integration
 Model coupling
 Maintaining current libraries
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Automated Diagnostics

 Increasing complexity of software and systems
 Aggressive automation of diagnostic...

– Instrumentation
– Collection
– Analysis

 Drivers
– Application verification
– Performance analysis
– Software debugging
– Hardware-fault detection and correction
– Failure prediction and avoidance
– System tuning
– Requirements analysis
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Hardware Latency

 Ever increasing computation rate, parallelism, and bandwidth
 Stagnant hardware latencies
 Targeted hardware improvements

– Fast synchronization on chip, in memory, over networks
– Smart-network acceleration or offload

 Latency hiding and avoidance in algorithms and software
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Hierarchical Algorithms

 Latency stagnation → increasing depth of memory hierarchy
 Heterogeneous computing → process hierarchy
 Increasing fault rates → redundancy moves up hierarchy
 Current strategies

– Cache blocking
– Hybrid data parallelism
– File-based checkpointing

 Emerging needs
– Dynamic decisions between recomputing and storing
– Fine-scale task/data hybrid parallelism
– In-memory checkpointing
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Parallel Programming Models

 Latency stagnation → minimize synchronization
 Memory hierarchies deepening
 Current programming models target one level at a time

– Source language for instruction-level parallelism
– OpenMP for multi-processor intra-node parallelism
– MPI for inter-node parallelism

 New levels of memory hierarchy mapped to an existing level of 
parallelism or ignored

 Levels of parallelism must be mapped to specific, distinct levels 
of the programming model—difficult to modify

 Models continue being coupled into large models
 Improved model

– Arbitrary levels of parallelism, mapped onto hardware at runtime, 
perhaps dynamically

– Minimize synchronization, maximize asynchrony
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Solver Technology and Innovative 
Solution Techniques

 Higher resolution, longer time scales, more coupling
 Solver requirements

– Multi-level methods
– Preconditioners
– Adaptive mesh refinement
– Irregular meshes
– Newton-Krylov methods
– Complex-mesh generation

 Trade off flops for memory operations and communication
 New applications of stochastic methods?
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Accelerated Time Integration

 Many apps need much-longer simulated times
 Single-process performance has stalled
 Increasing resolution shortens time step for explicit methods
 Implicit methods

– Longer time steps
 Compact shape-preserving bases

– Greater accuracy for long steps
 High-order time integration

– Greater accuracy for long steps
 Pipelined-in-time and parallel-in-time algorithms

– Faster computation
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Model Coupling

 Implementation, verification, validation
 Wide range of space and time scales
 Downscaling, upscaling, coupled nonlinear solving
 Data assimilation with huge data volumes
 Uncertainty and sensitivity analyses
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Maintaining Current Libraries

 Current HPC applications rely on libraries
– MPI
– BLAS
– LAPACK
– FFTW
– ScaLAPACK
– PETSc
– Trilinos

 Must run well on new architectures
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Summary of summaries

 Town Halls
– Big solvers
– Big data
– Big software
– Long simulations
– Uncertainty, sensitivity, 

validation, and verification
– Multi-scale in space and time
– Hierarchical parallelism 
– Design optimization

 Survey Analysis
– Automated diagnostics
– Hardware latency
– Hierarchical algorithms
– Parallel programming models
– Solver technology and 

innovative solution techniques
– Accelerated time integration
– Model coupling
– Maintaining current libraries

27



Joint Math/CS Institutes: 
Application Requirements
James B White III (Trey)
Scientific Computing Group
National Center for Computational Sciences
trey@ornl.gov

Chicago
October 7, 2008


