
SOS-11 Panel
on Petascale (or is it Exascale?)

Systems

Steve Scott
Cray CTO

SOS-11
Key West, Florida

June 12, 2007

SOS-11, June 2007 Copyright 2007, Cray Inc. (2)

Questions from Steve P.:
Challenges/technology elements/walls: heterogeneous multicore, accelerators, memory

wall, local memory capacity, memory technology, network technology, etc.

(1) How can we alleviate any of these issues?
(2) Are there software solutions on the horizon that will help utilize any of these

technologies?
(3) Which of these walls most limits realizing sustained petascale performance?
(4) What technologies could be funded to make the biggest impact on peta/exascale

computing?
(5) How long before heterogeneous multicore chips are the norm?
(6) What new processor technologies might be useful/available by 2015?
(7) Acceleration technologies to help current MPI libraries? Will we move to hybrid

programming models? What cooperative partnerships could be formed to
accelerate the necessary technologies for exascale < 2020.

(8) What will the problems be to reach a usable exdaflop by 2015? Which solutions will
get us there?

(9) What are the truly transformational research direct we need to pursue?
(10) What can we do to get back to > 4 B/s per flop and scatter/gather? Just 3D

stacking?
(11) What processor interconnects might be available to increase bandwidth between

processors? Optical?

SOS-11, June 2007 Copyright 2007, Cray Inc. (3)

Things I Don’t Worry Too Much About
Scaling the system architecture to 100,000 sockets
• High-bandwidth networks with load balancing and adaptive routing
• Globally addressable memory
• Scalable addressing architecture and translation mechanisms
• Latency hiding and communication mechanisms
• Synchronization and collective operation support

Scaling the system software to 100,000 sockets
• System boot and administration
• Basic system services
• Application launch, scheduling and interaction

Programming environments to get us to a petascale
• Programming models:

MPI, OpenMP, PGAS, Global View
• Debugging very challenging at scale; getting by with printf()
• Performance tuning challenging; lots of time and expertise
• (Programming environments are being sorely stressed…)

SOS-11, June 2007 Copyright 2007, Cray Inc. (4)

Key HW Challenges for Peta(Exa)scale Computing

On-chip micro-architecture
• Move from fast serial thread emphasis to efficient parallel performance
• Managing data movement and exploiting locality are key
• Hardware + Software must isolate the programmer from this!

Local Memory Bandwidth
• Absolutely must get beyond DIMMs to 3D integration
• Possibly nanotube-based memory

Optical signaling
• Cable bulk becoming a major issue, and freq*length hitting a wall
• But optics needs improvement in density, cost, signaling rate

Power and cooling
• We can deal with this by limiting performance as needed
• Lots of headroom for improvement in power management
• Cooling will likely move back to liquid

Exotic technologies (cryo, bio, quantum, nano, reversable, etc.)?
• Not needed for Exascale, with possible exception of nanotube memory
• Will likely need something beyond CMOS for Zettascale…

SOS-11, June 2007 Copyright 2007, Cray Inc. (5)

Key SW Challenges for Peta(Exa)scale Computing
System and application resilience
• Must ride through all manner of faults
• Need innovative ways of ensuring that large, long-running apps finish

File system and parallel I/O scaling
• Disk bandwidth not scaling (~25%/year/disk vs. ~%100 flops/year)
• Jitter/load balance a major problem for parallel I/O across many RAIDs
• Managing data/metadata/authentication/recovery/etc. at petascale
⇒ May be time to insert a new SSD level in the hierarchy

How do we test large systems we can’t deploy in house?
• Software functionality, reliability, performance

Better tools for system administrators at scale
• It’s hard to know what’s going on in really big systems

Application scaling
• Looks like many apps will scale to petaflops; exaflops??
• Don’t want to expose millions of threads to the users

⇒ accelerator technology with compiler-managed node-level parallelism
Programming languages and tools….
• Really need a fundamental advancement here to (a) scale to an exaflop

and (b) make parallel programming easier for the masses

SOS-11, June 2007 Copyright 2007, Cray Inc. (6)

Relative complexity of three programming models
(as measured by the size of their documentation):

MPI 1 Standard: 239
MPI 2 Standard: 376

Total: 615 Pages

“intro_shmem” man page: 10 Pages
(Cray implemented the entire NPB
suite with a shmem_get and a barrier)

CF90 Co-Array Programming
Manual (SR-3908): 30 Pages
(11 pages for language description)

What Parallel Programming Model Are We
Going to Inflict on the Masses?

SOS-11, June 2007 Copyright 2007, Cray Inc. (7)

Random Gather (Serial)

parameter (n=2**30)
real table(n)
buffer(nelts) ! nelts << n
…
do i=1,nelts

buffer(i) = table(index(i))

enddo

parameter (n=2**30)
real table(n)
buffer(nelts) ! nelts << n
…
do i=1,nelts

buffer(i) = table(index(i))

enddo

• Purely synthetic, but simulates “irregular”
communication access patterns.

• (We do have customers that do this stuff)

SOS-11, June 2007 Copyright 2007, Cray Inc. (8)

Random Gather (Co-Array Fortran)

parameter (n=2**30) ! 1 Gigaword
parameter (NPES=2**7) ! 128 Pes
parameter (eltspe = 2**23) ! Elements per PE
real table (eltspe)[NPES]

…
!dir$ unroll(16)

do i=1,nelts
PE =(index(i) + eltspe-1)/eltspe
offset = mod(index(i)-1,eltspe)+1
buffer(i) = table(offset)[PE]

enddo

parameter (n=2**30) ! 1 Gigaword
parameter (NPES=2**7) ! 128 Pes
parameter (eltspe = 2**23) ! Elements per PE
real table (eltspe)[NPES]

…
!dir$ unroll(16)

do i=1,nelts
PE =(index(i) + eltspe-1)/eltspe
offset = mod(index(i)-1,eltspe)+1
buffer(i) = table(offset)[PE]

enddo

• Simple to write
• Very high performance
• Need the right underlying hardware

SOS-11, June 2007 Copyright 2007, Cray Inc. (9)

if(my_rank.eq.0)then

! first gather indices to send out to individual PEs

do i=1,nelts

indpe = ceiling(real(index(i))/real(myelts)) - 1

isum(indpe)=isum(indpe)+1

who(isum(indpe),indpe) = index(i)

enddo

! send out count and indices to PEs

do i = 1, npes-1

call MPI_SEND(isum(i),8,MPI_BYTE,i,10,

& MPI_COMM_WORLD,ier)

if(isum(i).gt.0)then

call MPI_SEND(who(1,i),8*isum(i),MPI_BYTE,i,11,

& MPI_COMM_WORLD,ier)

endif

enddo

! now wait to receive values and scatter them.

do i = 1,isum(0)

offset = mod(who(1,0)-1,myelts)+1

buff(i,0) = table(offset)

enddo

do i = 1,npes-1

if(isum(i).gt.0)then

call MPI_RECV(buff(1,i),8*isum(i),MPI_BYTE,i,12,

& MPI_COMM_WORLD,status,ier)

endif

enddo

do i=nelts,1,-1

indpe = ceiling(real(index(i))/real(myelts)) - 1

offset = isum(indpe)

isum(indpe) = isum(indpe) - 1

buffer(i) = buff(offset,indpe)

enddo

else !if my_rank.ne.0

call MPI_RECV(my_sum,8,MPI_BYTE,0,10,

& MPI_COMM_WORLD,status,ier)

if(my_sum.gt.0)then

call MPI_RECV(index,8*my_sum,MPI_BYTE,0,11,

& MPI_COMM_WORLD,status,ier)

do i = 1, my_sum

offset = mod(index(i)-1,myelts)+1
do i = 1, my_sum

offset = mod(index(i)-1,myelts)+1

buffer(i) = table(offset)

enddo

call MPI_SEND(buffer,8*my_sum,MPI_BYTE,0,12,

& MPI_COMM_WORLD,ier)

endif

endif

Random Gather (MPI)

SOS-11, June 2007 Copyright 2007, Cray Inc. (10)

…
forall block in UpdateSpace.subBlocks do

for r in RAStream(block.numIndices, block.low) do
T(r & indexMask) ^= r;

…
forall block in UpdateSpace.subBlocks do

for r in RAStream(block.numIndices, block.low)
T(r & indexMask) ^= r;

Chapel
A new parallel language developed by Cray for HPCS

Themes
Raise level of abstraction, generality compared to SPMD approaches
Support prototyping of parallel codes + evolution to production-grade
Narrow gap between parallel and mainstream languages

Chapel’s Productivity Goals
Vastly improve programmability over current languages/models
Support performance that matches or beats MPI
Improve portability over current languages/models (similar to MPI)
Improve code robustness via improved abstractions and semantics

Status

Draft language specification available
Portable prototype implementation underway
Performing application kernel studies to
exercise Chapel
Working with HPLS team to evaluate Chapel
Initial release made to HPLS team in December 2006

SOS-11, June 2007 Copyright 2007, Cray Inc. (11)

Chapel Code Size Comparison
For HPC Challenge Benchmarks

STREAM
Triad

Random
Access

FFT

SOS-11, June 2007 Copyright 2007, Cray Inc. (12)

End

