
HP & PetaFLOPs (But first some words from your electric company)

Richard Kaufmann High Performance Computing Division, HP

SOS 11

© 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Servers Have Turned Into Power-Hungry Beasts!

Single enclosure with 64 cores @2.66Ghz

Initial Purchase Price vs. 3-year TCO

- Interesting non-hypothetical question
 - Would you pay an extra US\$100 for a server that had a more efficient power supply?
 - Example: ~70% efficient supplies are really, really cheap; ~90% efficient supplies aren't
 - Assume server needs 400W, net of power supply efficiency
 - If you said yes, how much do you think you'd save over three years?
 - \$0? (breaks even, but you can hold your head high knowing you did the right thing)
 - \$200?
 - \$400?

How about more than \$600?!

Case 1: 70% Efficient Supply \$1,500 to power the server 571W * 3 years \$1,700 to pay for the power infrastructure

Case 2: 90%

\$1,168 to power the server 444W * 3 years\$1,333 to pay for the power infrastructure

- US\$0.10/KwHr
- US\$10/W for data center costs (spread over 10 years)
 - Low end of Google spread: \$10 \$22. http://www.eweek.com/print_article2/0,1217,a=204820,00.asp

\$715 savings less \$100 for the better power supply

This is one reason why (gratuitous plug: HP's) blades make sense for many HPC customers

- Engineered for TCO
 - Very efficient power supplies, fans
- Redundancy without efficiency compromise
 - Power supplies run best at full load
 - Example: 3+3. Three power supplies providing the load at 100%; extra power supplies only brought on-line when required
 - Effective cooling
 - Ducted fans, "clean sheet of paper" airflow design, baffles, ...
 - More connections via etch, not cables
 - 1st level network switching within enclosure
- Typical: ~25% power reduction compared to average 1U servers

TCO should be pervasive!

- You really want to be able to "pay it forward," and select servers with (at least options for) more efficient power supplies, etc.
- Blades are built with TCO (power costs, management costs, etc.) as their top design goals
- Are you still buying systems based only on initial purchase price?

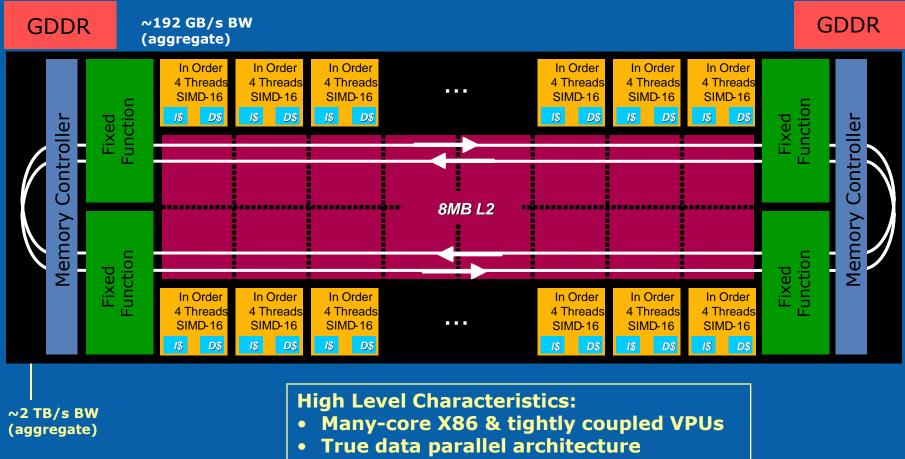
The ubiquitous foil about multi-core processors...

2007

2011

2015 etc.

And the words to go with them...

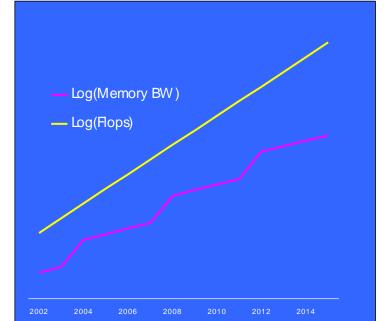

- Cores double every eighteen months, more or less
 - No law says it has to be 2, 4, 8, ...
 - Function of fab economics and user needs, not slavish devotion to powers of two
- Speculation (based on a LOT of FUD)
 - FLOP acceleration beyond that gained by increasing core count
 - Side effect of GPU wars

But How Will Those FLOPS Be Delivered?

- Per-thread performance will remain somewhat static
 - Perhaps "simplified cores" will enable core count acceleration beyond what comes with shrinkage
 - Perhaps a few "fast" cores for the stubborn threads
 - Speculation: We're all going to get tired of "around 3GHz"
- Floating point units will get a lot more capable
 Side effect of GPU arms race
- And, of course, you'll be up to your neck in cores!

Larrabee as a Dev Platform for Future HPC Many Core Products

- ~2 TFLOP aggregate throughput
- Vector machine (SIMD-16)
- Highly threaded (128 total HW threads)



Equal Time

- You'll have heard all sorts of great things from AMD earlier(!)
 - Push for Torrenza: HT-based acceleration
 - HTX Slots \rightarrow On Package \rightarrow ? On Die
 - Push for Fusion: ATI+AMD
 - GPU integration on-package? On-die?

But What Of The Memory Subsystem?

- Memory bandwidth (still) increasing incrementally over the next few years
 - Gently frequency bumps
 - DDR \rightarrow DDR2 \rightarrow DDR3 \rightarrow etc.
 - FBD (nothing comes for free)
 - Latency, Power ++
 - Bandwidth++, pin count -

A breakthrough is needed (optical!), but won't happen for 5+ years Potential intermediate answers:

- Additional memory channels
- Mux chips (used in PA-RISC, HP Itanium)

I/O

• PCI-E \rightarrow Gen2

- Enabler for QDR IB
- First server platforms ~end 07

Geneseo

- Coherent and atomic ops across PCI-E
- Response to HT

• HT

- HT3 Direct-attach Accelerators, NICs, ...

What's Up With HP & PetaFLOPs?

- Yes, we bid with Intel, PSC and Sandia on a sustained PetaFLOP machine!
- What we can say
 - Intel ManyCore + Aggressive 3D Torus Interconnect + Next-generation blades
 - Interesting challenges
 - RAS + Packaging + Link technology
 - Programming models, tools
 - Power!
- This is a product effort
 - It'd be a heck of a "Serial 1"!
 - HP's effort addresses both high-end and ISV-led midrange market

invent

Optical...

- Long copper IB cables are about to disappear
 - Optical E-O-E cables "real soon now" from multiple suppliers
- Tug of war:
 - Optical pushing to replace copper at shorter and shorter distances
 - Row-to-row → Rack-to-rack → Intra-Rack → Intra-Server → Server ⇔Memory → Intra-chip
 - Copper driving down cost/bit/sec
 - Very much like the CRT fight with flat panels
 - 1980: Prevailing opinion "Flat panels will replace CRTs in a few years"