Disruptive Technologies:
Field Programmable Gate Arrays

Maya Gokhale

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

June 14, 2007

FPGA architectures

Heterogeneous System on Chip
Logic

*Configurable Logic Blocks, hierarchically

|

0
7
0
0

aggregated e L

J9re9 Bl‘/lllﬁlll B
Embedded memory blocks, configurable in H |[DDNEEDEE@M@ |
width, number of ports, depth o Ee@mE@eo| @f

/|2 OO0 00 O O B
*On-chip ALUs such as multipliers and other | : s <: := IBM 405 4: := s : 0
. -chi - PowerPC | q

DSP blocks; on-chip processors I ‘a wld mr
-On-chip external 1/O interfaces - Gigabit B: : : : : : : : :B
transceivers, PCI core ; ol lmomEEE @ O ;
*Extensive routing fabric for flexible D. aBBaBaf@aa .D
. . O OO0 Ol O O O O
interconnection "\ /

User 1/0
*Used as glue logic, fast prototyping, logic

emulation, embedded systems, ... reconfigurable
computing

Reconfigurable Computing Systems

® Acceleration engine on |/O bus of PC, workstation

® Closely coupled co-processor - dual socket
FPGA/Opteron

® Cluster with FPGA engine on each node

® Reconfigurable supercomputer - high performance
iInterconnect between nodes

FPGA co-processors

o

e Part of Cray “Adaptive Superéomputr” roadmap
@ Possible use in future “appliance” architectures (Exegy)

Reconfigurable computing pros/cons

Pro Con
® Performance - order of magnitude @ Cost
on the right kernels — Hardware cost is many times

COTS hardware

® Footprint - small form factor for the . .
— Design tools are expensive

delivered performance
® Limited application domains
® Powerfenergy - 25W vs. 100W — Well suited to small integer, DSP
® Re-programmable - not just a single computation, but not suited to 64-

application kernel bit floating point
— Amdahl’'s Law: Co-processor
mode is inherently challenging

e Algorithm development difficulty

— FPGA architecture is difficult
target: Very large search space for
placing and routing a design

Example

n=0

p=0

fori
n = (K[i]*L[i]+M[i]*n)*Oli]
P =n+p

® Many choices for instruction
level parallelism

— multiplies/adds in parallel
or sequential?

— area/speed tradeoff
— affects loop-level
pipelining
—Number of clock cycles
to compute n & p

— affects clock speed

Pipeline loop alternatives

® Pipelined: One memory for all arrays

Initiate a new loop iteration every 4 clock cycles.
8 stage pipeline

Stage 0: Update array pointers; issue read of M

Stage 1: Increment i; issue read of K; save M in
register

Stage 2: temp1 = M*n; issue read of L; save K in
register

Stage 3: issue read of O; save L in register
Stage 4: temp2 = K*L; save O in register
Stage 5: temp3 = temp1 + temp2

Stage 6: n = temp3*0O

Stage 7: p = p+n

® Combinational: Four memories

Initiate a new loop iteration every
clock cycle

1 stage pipeline

Stage 0: Perform all multiplies and
add, store results in registers

e Pipelined: Four memories

Initiate a new loop iteration every 2
clock cycles

6 stage pipeline
Stage 0: Issue reads of K, M, L, O

Stage 1: Increment i; save M, L, O in
registers

Stage 2: temp1 = K*L; temp2 = M*n
Stage 3:temp3 = temp1 + temp2
Stage 4: n = temp3*0O

Stage 5: p = p+n

For XC2V2000-6

153/10752 slices
5/56 multipliers
66 MHz

|

131/10752 slices
3/56 multipliers
219 MHz

Schematic view from synthesis

s S

x " na snd r- —
et L PP T, ..nt.-:t‘.u_ -y
ot st ol o4 "

Wi jeptp ety T

T vt 4 1)~ - i 2
v s bl e X {d o S—— |
T
by L o >
po-{__J g |
N T 'A.F\ L.E
. (Gl Oped RN
v/ "
o R — |
N J q
A ; 1+
o by :"'l' *~;'-'
B o
- i
L — >
ek | - . }-__ & lu D
-) ! » e
;‘"‘_, PR ST ——
e i 2 1 L PPN
Vi d e g ok dad O
— ol N 5 \
Rty - et O Of e = - . iy e
S ohe i D 4 | o]
':‘“ o 1w naery el nadeny |1 - 9
o= =l i Y |7
25 gl = . - . e 19
I . RO [y : Pt
| ‘,.' - '1 » - - 'd —l- -

m_p.;.;‘ "‘-—-.5 “U‘.‘--"{#‘.’-M-
Qo -

Schematic view from Place&Route

Pipeline controller

Sequence controller

Device speed data version: PRODUCTION 1.118 2004-03-12.
Device utilization summary:

Number of External IOBs 442 out of 624 70%

Number of LOCed External IOBs Ooutof442 0%

Number of MULT18X18s 3outof 56 5%

Number of SLICEs 131 out of 10752 1%

Number of BUFGMUXs loutof16 6%

The AVERAGE CONNECTION DELAY for this design is: 1.217
The MAXIMUM PIN DELAY IS: 4.558

The AVERAGE CONNECTION DELAY on the 10 WORST NETS 1s:4.005

Reconfigurable supercomputing
applications

® Simulations
— physical phenomena
— physics-based codes
— behavior of physical entities in space and time

— run single large problem with high interaction between parts

® Analysis
— Bioinformatics - BLAST, genomic expression
— Financial predictions - Monte Carlo methods to (eg.) price derivatives
— Text mining
— Database search

— Run large number of independent problems on compute/data intensive backend
processors

— Gather results at front end

Assessing FPGAs as simulation co-
processors

e Study execution profile
— oprofile, PAPI, TAU
— quantify time spent at loop or even line granularity
— find representative data sets
— execution profile may vary greatly depending on data set
— want 90% time in a small kernel, preferably library function

e Study code of likely acceleration candidates
— data type - integer, single precision FP, double FP
— types of operations - divides, transcendental functions
— numbers of operations - how many FP units are needed

e Study data profile

— data consumed and produced in a region must be communicated between global
microprocessor memory and FPGA board memory

— need to know amount of data transferred (per loop iteration)
— need to know if communication and computation can be overlapped

® RSA 2005, RSSI 2006

Scientific simulation profiles

Compute
Code Kernel % |“omment
LINPACK 74% DGEMM
MILC 55%, COllleCthn of matrix algebra
routines
EDIMER
GAMESS 40%
Large, complex routine
POP 10% Conjugate gradient solver
GROMACS 559, In 5 rgutlngs, already
optimized in sse

Speedup of 2X-3X at the very most

Scientific simulations on FPGAs

® Molecular dynamics ® Road traffic simulation
® Non-bonded force calculation @ Massively parallel cellular
e Specialized floating point format automaton

(BU) 5X over Pentium on @ 2X on Cray XD1 node

Annapolis Micro PCI card

® Single precision floating point
format (USC) 2X over Pentium
on SRC node

90-10 is hard to find in scientific
simulations

@ Acceleration using only library routines will be negligible
for scientific codes.

—Even Linpack needs at least 5X DGEMM acceleration,
which has not yet been demonstrated for double
precision FP.

@ Acceleration of compute kernels is problematic.

—Long, complex double precision code sequences: not
a good fit for FPGA

— Collection of little hot spots whose data structures are
enmeshed in surrounding serial code

@ The Amdahl’'s Law limitation also applies to other co-

FrOCessors.
L |

FPGAs for analysis problems

@ Signal and image processing
— Integer and single precision FP
— Amenable to streaming, pipelining
— Compute within the data acquisition pipeline

— Lots of working, real world implementations, eg.
Cibola Flight Experiment with 9 Virtex 1000’s for signal
processing on-board a satellite, launched March 2007

® Graph algorithms

—Point to point shortest path on road network (a la
mapquest): Zach Baker at LANL

— All-to-all shortest path of very large sparse semantic
graphs: Scott Kohn and Andy Yoo at LLNL

L

Example: Point to point shortest path

@ Used for route planning in TranSIMs, simulating road
traffic on road networks in large metropolitan areas
@ Opportunity for parallel execution of route planning
— 100K - 1,000K routes to compute
— Can complete in nearly arbitrary order
— Lat/long of all road nodes provided

e Latency dominated computation
— Mitigate through application-specific multi-threaded
approach

® Implemented on Cray XD1 node
—Dual Opteron + Xilinx Virtex2Pro50 FPGA for every

m —RapidArray HT connection to FPGA
L IEEE FCCM 2007

Point-to-point shortest path

® A* algorithm

—Uses distance to
destination to decide
which possible
paths to pursue

— Hardware-friendly
priority queue
iImplementation
needed

— Bandwidth to road
network graph/

critical to
performance

L

add_queue(start, 0)
while (queue != empty)
u = extract_min(queue)
iffd.explored == true)
continue
elsif(u == dest)
return path
else
foreach(edge (u,v) out from u)
= distance(v, dest)
add_queue (v, path_dist + d(v))
previous[v] = u
u.explored = true

Adaptations for hardware: priority queue

® Software A* uses Fibonacci Heap
—O(log(n)) average performance
— Complicated data structure
—Heap can grow without bound during execution

@ Hardware approach uses bubble sort!
— Needs only a single memory port
— Sort speed not as important: parallel A* units
— Buffer limited to 32 entries, determined by analysis of data set

u.— com M
3 i nutatign
N

Parallel A* units

® Each unit contains
— Distance calculation block

— bubble sort hardware block to
sort the queue

® Customized cache in memory
controller

— Cache from DRAM into
QDRII SRAM

— LRU page replacement

A *
Unit

SRAM acts as cache for
A Addr

DRAM graph store

A
Unit

A*
Unit

A*
Unit

Memory Rapid
]] Controller Transport

— Transfers from DRAM to SRAM

are controlled by the cpu

@@)m

MBG 19

Performance

Num Units | Area (slices) Area (%) Mult (of 232) BRAM (of 232)

24 | 18165 76 48 112
Implementation | Time (sec) Loads Rate/sec Speedup
CPU 35 2024294 edges 86376 1
XD-1 (DRAM) 0.68 778 blocks 2925280 50

® Compare Opteron only to Opteron + FPGA

® FPGA algorithm uses Opteron’s DRAM to load SRAM
cache

® Access to 2024294 edges, with 778 page loads

= o

Discussion

® A 50X speedup for a latency-driven random-access
algorithm truly demonstrates a disruptive technology

e BUT ...

@ Hardware implementation in VHDL by experienced
hardware/software designer

® Six months to build/debug hardware

® Needs considerable expertise with FPGA, CAD tools,
board level architecture, system level architecture,
software algorithms and their implication for hardware

® Needs coordination between software and hardware

L eofguihun

Example: Path finding in semantic graphs

Semantic graphs are used to
analyze relationships in large data
sets coming from heterogeneous
data sources

How is A related to B?
|s a certain activity pattern in the data?

Gebo pgpcloce |

M. Newman and M. Girvan, Finding and
evaluating community structure in networks,
Phys. Rev., 2003

We need to analyze graphs that are
e orders of magnitude larger than those
Gocfiman S, raorblalt & Marcus, processed using current technology, 1072

intelligence analysis,

CACM, 2004 nodes, faster - in minutes instead of days
4 @@m
~ =

MBG 22

Database storage appliance

AB CDEFGH

Netezza Performance Server

Bl Applications Client T
1 :: I /- SPU >
e — Pl e e S
|
\ f SPU
C12|F12] G1
‘
+ c14|F14] 61
' A C6|[c12 -

ODBC 3.X F7|F13 P e
9 —» +—pBC Type 4 C38|[F39 > m o S :
X % sQL/92 [613][c22] czsfezs] o2 s
% SPU i
ST 25
SMP @ ©3 2] &3 f<pea E

C3 G3
Host A= .
O] >
ﬂ SPU 31
c~— 32

IC38|F38) G3
Fast Loader/ \ Cajraoges ~ s
Unloader "

[T P
Local Applications/ “

Ligz
/eam— [|
cru—/ ea— L —Flashram

Methodology

® Represent graph as SQL table where each row
represents an edge

® Pose the shortest path problem as SQL query
® Query is optimized on host

® Sub-queries dispatched to all the FPGA/PPC processors
who read their part of the database and filter the table
rows

@ Rows matching the query are returned back to host
® User sees SQL interface only
e SC 2007

ll‘l? @@@Ep&r@m

IL

FPGA-accelerated storage server vs. BG/L

IBM BG/L Netezza 8650
(2005) (2006)
Graph Edges 30 billion 300 billion
Graph Random Scale-Free
Description (academic (“real world”
problem) problem)
Processors 65, 538 648
Avg. Search 1.4 sec 218 sec
Time
Level of Effort 6 months, 2 week,
2000 lines of | 100 lines of SQL
C code code

Bi-directional Breadth-First
Graph Search Algorithm

* 10X More Edges
* 12X Productivity Improvement
300 Billion Edge Problem Not

Achievable on BG/L 70
@@m
g

Exegy FPGA appliance

processaor

reconfigurable
logic

configuration
subsystem

disk
controller

processor

*Applications include *Flow data from disk through
financial analysis and text FPGA pipeline at 300MB/s -
search. 600MB/s rate.

Well suited to streaming problems. @@m
R

MBG 26

Discussion

® Pros

— Appliance approach hides existence of FPGA from
user

— Familiar software-oriented interface
—No need to do synthesis, place, and route

® Cons
—Cost
— Limited application classes
— Closed source, not extensible

&.L' Co "

Comparison of various co-processors

@ Matched filter over
hyperspectral imagery
— Locate geographic,
atmospheric features
—Wide spectral content,

divided into 100’s of
bands

—Large data cubes (eg.
240 x 240 x 1000)
collected in real time

@ Compare Cell, FPGA, and
GPU

e Justin Tripp, Zach Baker
of LANL (FCCM, 2007)

Hyperspectral imagery applications

Geology Mineral Detection

2 4 S5 08 02 14 16 18 20 22 24 26 2B 50 32
S0, COLUMN ABUNDANCE (gm™2
A v A

‘metérs

Matched filter algorithm

Read datacube
from input file

Signature Loop ‘

Whiten

Signature

Transpose
and copy

datacube

wa— Time break down for each task (seconds)
| oo s Load File 4.32 || Dot Product .60
' i Copy Data 11.75 || Signature Magnitude | .60
Fpscn oo Whiten Signature .15 || Scaled Dot Product | .65
! R Mean Subtraction | 1.30 || Scalar Ops .20
Sgun | A
Hosniuee Main Pixel Loop Processing of each signature takes 3.05 seconds on 3.2GHz Xeon.
Impl. | Read Trans- Mean Mean Dot Scalar
File pose Calc. Sub. Product Ops.
CPU X X X X X X
GPU X X X
CELL X X X X
FPGA X X X
Speedup Time per Speedup Speedup
Implementation over CPU Signature per $k per kWatt
FPGA (V2Pro50) 3.91 0.78 sec .39 11.2
GPU (nv 7900) 3.1 1.0 sec 1.24 8.86
Cell (3GHz) 8.0 0.38 sec 1.0 25.4
CPU (3GHz Xeon) 1 3.05 sec 5 3.33

Summary

® FPGA co-processors have shown orders of magnitude
speed up on certain problems.

® FPGAs are not a panacea and are not best used as
general purpose processors.

® Adapting algorithms to FPGA continues to be a challenge,
though “appliance” approach is useful for specific
application classes.

@ Cost of FPGAs and associated algorithm development
tools is very high.

@ Multi-core processors are competitive to FPGAs,
especially for floating point dominated kernels.

L eofguihun

