
Disruptive Technologies:
Field Programmable Gate Arrays

Maya Gokhale

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

June 14, 2007

MBG 2

FPGA architectures

Heterogeneous System on Chip

•Configurable Logic Blocks, hierarchically
aggregated

•Embedded memory blocks, configurable in
width, number of ports, depth

•On-chip ALUs such as multipliers and other
DSP blocks; on-chip processors

•On-chip external I/O interfaces - Gigabit
transceivers, PCI core

•Extensive routing fabric for flexible
interconnection

•Used as glue logic, fast prototyping, logic
emulation, embedded systems, … reconfigurable
computing

MBG 3

Reconfigurable Computing Systems

 Acceleration engine on I/O bus of PC, workstation
 Closely coupled co-processor - dual socket

FPGA/Opteron
 Cluster with FPGA engine on each node
 Reconfigurable supercomputer - high performance

interconnect between nodes

MBG 4

FPGA co-processors

 Versatile architecture
 Part of Cray “Adaptive Supercomputer” roadmap
 Possible use in future “appliance” architectures (Exegy)

MBG 5

Reconfigurable computing pros/cons

Pro
 Performance - order of magnitude

on the right kernels

 Footprint - small form factor for the
delivered performance

 Power/energy - 25W vs. 100W

 Re-programmable - not just a single
application kernel

Con
 Cost

— Hardware cost is many times
COTS hardware

— Design tools are expensive

 Limited application domains
— Well suited to small integer, DSP

computation, but not suited to 64-
bit floating point

— Amdahl’s Law: Co-processor
mode is inherently challenging

 Algorithm development difficulty
— FPGA architecture is difficult

target: Very large search space for
placing and routing a design

MBG 6

Example
n=0
p=0
for i
 n = (K[i]*L[i]+M[i]*n)*O[i]
 p = n+p

 Many choices for instruction
level parallelism
—multiplies/adds in parallel

or sequential?
– area/speed tradeoff
– affects loop-level

pipelining
—Number of clock cycles

to compute n & p
– affects clock speed

Pipeline loop alternatives
 Pipelined: One memory for all arrays

Initiate a new loop iteration every 4 clock cycles.

8 stage pipeline

Stage 0: Update array pointers; issue read of M

Stage 1: Increment i; issue read of K; save M in
register

Stage 2: temp1 = M*n; issue read of L; save K in
register

Stage 3: issue read of O; save L in register

Stage 4: temp2 = K*L; save O in register

Stage 5: temp3 = temp1 + temp2

Stage 6: n = temp3*O

Stage 7: p = p+n

 Pipelined: Four memories
Initiate a new loop iteration every 2

clock cycles
6 stage pipeline
Stage 0: Issue reads of K, M, L, O
Stage 1: Increment i; save M, L, O in

registers
Stage 2: temp1 = K*L; temp2 = M*n
Stage 3:temp3 = temp1 + temp2
Stage 4: n = temp3*O
Stage 5: p = p+n

 Combinational: Four memories
Initiate a new loop iteration every

clock cycle
1 stage pipeline

Stage 0: Perform all multiplies and
add, store results in registers

For XC2V2000-6

153/10752 slices

5/56 multipliers

66 MHz

131/10752 slices

3/56 multipliers

219 MHz

MBG 8

Schematic view from synthesis

MBG 9

Schematic view from Place&Route

Pipeline controller

Datapath: adders/multipliers/registers

Sequence controller

Device speed data version: PRODUCTION 1.118 2004-03-12.
Device utilization summary:
Number of External IOBs 442 out of 624 70%
Number of LOCed External IOBs 0 out of 442 0%
Number of MULT18X18s 3 out of 56 5%
Number of SLICEs 131 out of 10752 1%
Number of BUFGMUXs 1 out of 16 6%
The AVERAGE CONNECTION DELAY for this design is: 1.217
The MAXIMUM PIN DELAY IS: 4.558
 The AVERAGE CONNECTION DELAY on the 10 WORST NETS is:4.005

MBG 10

Reconfigurable supercomputing
applications

 Simulations
— physical phenomena

— physics-based codes

— behavior of physical entities in space and time

— run single large problem with high interaction between parts

 Analysis
— Bioinformatics - BLAST, genomic expression

— Financial predictions - Monte Carlo methods to (eg.) price derivatives

— Text mining

— Database search

— Run large number of independent problems on compute/data intensive backend
processors

— Gather results at front end

MBG 11

Assessing FPGAs as simulation co-
processors
 Study execution profile

— oprofile, PAPI, TAU
— quantify time spent at loop or even line granularity
— find representative data sets

– execution profile may vary greatly depending on data set
— want 90% time in a small kernel, preferably library function

 Study code of likely acceleration candidates
— data type - integer, single precision FP, double FP
— types of operations - divides, transcendental functions
— numbers of operations - how many FP units are needed

 Study data profile
— data consumed and produced in a region must be communicated between global

microprocessor memory and FPGA board memory
— need to know amount of data transferred (per loop iteration)
— need to know if communication and computation can be overlapped

 ERSA 2005, RSSI 2006

MBG 12

Scientific simulation profiles

In 5 routines, already
optimized in sse

55%GROMACS

Conjugate gradient solver10%POP

EDIMER

Large, complex routine
40%GAMESS

Collection of matrix algebra
routines

55%MILC

DGEMM74%LINPACK

CommentCompute
Kernel %Code

Speedup of 2X-3X at the very most

MBG 13

Scientific simulations on FPGAs

 Molecular dynamics
 Non-bonded force calculation
 Specialized floating point format

(BU) 5X over Pentium on
Annapolis Micro PCI card

 Single precision floating point
format (USC) 2X over Pentium
on SRC node

 Road traffic simulation
 Massively parallel cellular

automaton
 2X on Cray XD1 node

rc

rL

MBG 14

90-10 is hard to find in scientific
simulations

 Acceleration using only library routines will be negligible
for scientific codes.
—Even Linpack needs at least 5X DGEMM acceleration,

which has not yet been demonstrated for double
precision FP.

 Acceleration of compute kernels is problematic.
—Long, complex double precision code sequences: not

a good fit for FPGA
—Collection of little hot spots whose data structures are

enmeshed in surrounding serial code

 The Amdahl’s Law limitation also applies to other co-
processors.

MBG 15

FPGAs for analysis problems

 Signal and image processing
—Integer and single precision FP
—Amenable to streaming, pipelining
—Compute within the data acquisition pipeline
—Lots of working, real world implementations, eg.

Cibola Flight Experiment with 9 Virtex 1000’s for signal
processing on-board a satellite, launched March 2007

 Graph algorithms
—Point to point shortest path on road network (a la

mapquest): Zach Baker at LANL
—All-to-all shortest path of very large sparse semantic

graphs: Scott Kohn and Andy Yoo at LLNL

MBG 16

Example: Point to point shortest path

 Used for route planning in TranSIMs, simulating road
traffic on road networks in large metropolitan areas

 Opportunity for parallel execution of route planning
—100K - 1,000K routes to compute
—Can complete in nearly arbitrary order
—Lat/long of all road nodes provided

 Latency dominated computation
—Mitigate through application-specific multi-threaded

approach
 Implemented on Cray XD1 node

—Dual Opteron + Xilinx Virtex2Pro50 FPGA for every
—RapidArray HT connection to FPGA

IEEE FCCM 2007

MBG 17

Point-to-point shortest path

 A* algorithm
—Uses distance to

destination to decide
which possible
paths to pursue

—Hardware-friendly
priority queue
implementation
needed

—Bandwidth to road
network graph
critical to
performance

MBG 18

Adaptations for hardware: priority queue

 Software A* uses Fibonacci Heap
—O(log(n)) average performance
—Complicated data structure
—Heap can grow without bound during execution

 Hardware approach uses bubble sort!
— Needs only a single memory port
— Sort speed not as important: parallel A* units
— Buffer limited to 32 entries, determined by analysis of data set

MBG 19

Parallel A* units

 Each unit contains
— Distance calculation block
— bubble sort hardware block to

sort the queue
 Customized cache in memory

controller
— Cache from DRAM into

QDRII SRAM
— LRU page replacement

MBG 20

Performance

 Compare Opteron only to Opteron + FPGA
 FPGA algorithm uses Opteron’s DRAM to load SRAM

cache
 Access to 2024294 edges, with 778 page loads

MBG 21

Discussion

 A 50X speedup for a latency-driven random-access
algorithm truly demonstrates a disruptive technology

 BUT …
 Hardware implementation in VHDL by experienced

hardware/software designer
 Six months to build/debug hardware
 Needs considerable expertise with FPGA, CAD tools,

board level architecture, system level architecture,
software algorithms and their implication for hardware

 Needs coordination between software and hardware

MBG 22

Example: Path finding in semantic graphs

Semantic graphs are used to
analyze relationships in large data
sets coming from heterogeneous
data sources

How is A related to B?
Is a certain activity pattern in the data?

We need to analyze graphs that are
orders of magnitude larger than those
processed using current technology, 1012

nodes, faster - in minutes instead of days

M. Newman and M. Girvan, Finding and
evaluating community structure in networks,
Phys. Rev., 2003

T. Coffman, S. Greenblatt, S. Marcus,
Graph-based technologies for
intelligence analysis,
CACM, 2004

MBG 23

Database storage appliance

BI Applications

Local Applications

Bulk data movement: 250
GB/hour - uncompressed

(1 TB/hour Target)

Netezza Performance ServerClient

Fast Loader/
Unloader

ODBC 3.X
JDBC Type 4

SQL/92

SPU

FPGA

SPU
C12
C13

F12
F13

G1
2G1
3C14 F14 G1
4

FPGA

SPU
C21
C22

F21
F22

G2
1G2
2C23 F23 G2
3

FPGA

SPU
C3
0C3
1

F30
F31

G3
0G3
1

FPGA

SPU
C38
C39

F38
F39

G3
8G3
9C40 F40 G4
0

FPGA

A B C D E F G H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SMP
Host

C6
F7

C12
F13

C38 F39
G13 G22

C6
C7

F6
F7

G6
G7

scalability

Streaming
data, joins,
& aggs @
50MB/sec

MBG 24

Methodology

 Represent graph as SQL table where each row
represents an edge

 Pose the shortest path problem as SQL query
 Query is optimized on host
 Sub-queries dispatched to all the FPGA/PPC processors

who read their part of the database and filter the table
rows

 Rows matching the query are returned back to host
 User sees SQL interface only
 SC 2007

FPGA-accelerated storage server vs. BG/L

Bi-directional Breadth-First
Graph Search Algorithm

• 10X More Edges
• 12X Productivity Improvement
• 300 Billion Edge Problem Not
Achievable on BG/L

218 sec1.4 secAvg. Search
Time

2 week,

100 lines of SQL
code

6 months,

2000 lines of
C code

Level of Effort

64865, 538Processors

Scale-Free

 (“real world”
problem)

Random

(academic
problem)

Graph
Description

300 billion30 billionGraph Edges

Netezza 8650
(2006)

IBM BG/L
(2005)

MBG 26

Exegy FPGA appliance

•Applications include
financial analysis and text
search.

•Flow data from disk through
FPGA pipeline at 300MB/s -
600MB/s rate.

Well suited to streaming problems.

MBG 27

Discussion

 Pros
—Appliance approach hides existence of FPGA from

user
—Familiar software-oriented interface
—No need to do synthesis, place, and route

 Cons
—Cost
—Limited application classes
—Closed source, not extensible

MBG 28

Comparison of various co-processors

 Matched filter over
hyperspectral imagery
—Locate geographic,

atmospheric features
—Wide spectral content,

divided into 100’s of
bands

—Large data cubes (eg.
240 x 240 x 1000)
collected in real time

 Compare Cell, FPGA, and
GPU

 Justin Tripp, Zach Baker
of LANL (FCCM, 2007)

MBG 29

Hyperspectral imagery applications

MBG 30

Matched filter algorithm

MBG 31

Summary

 FPGA co-processors have shown orders of magnitude
speed up on certain problems.

 FPGAs are not a panacea and are not best used as
general purpose processors.

 Adapting algorithms to FPGA continues to be a challenge,
though “appliance” approach is useful for specific
application classes.

 Cost of FPGAs and associated algorithm development
tools is very high.

 Multi-core processors are competitive to FPGAs,
especially for floating point dominated kernels.

