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Memory Performance is Key
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• Total chip performance following Moore’s Law
• Increasing concern that memory bandwidth 

may cap overall performance



Concerns about Multicore

• Memory Bandwidth Starvation
– “Multicore puts us on the wrong side of the 

memory wall.  Will CMP ultimately be 
asphyxiated by the memory wall?” Thomas 
Sterling

– While true, multicore has not introduced a new
problem  

• “memory wall” first described in 1994 paper by Sally 
McKee et al. about uniprocessors

• Bandwidth gap matches historical trends FLOPs on 
chip doubles every 18months (just by different 
means)

– Regardless it is a worthy concern



CCSM3 FVCAM Performance

• FVCAM (atmospheric component of climate model) 
OBVIOUSLY correlated with memory bandwidth

• More memory bandwidth means more performance!
• So my theory is “If I move from single-core to dual-

core, my performance should drop proportional to 
effective memory bandwidth delivered to each core!”
(right?)
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CAM on Power5+
(test our memory bandwidth theory)

• T85 model (spectral CAM) run sparse and dense 
mode.  (turn off timers for MPI operations)

• 2% performance drop (per core) when moving 
from 1-2 cores

• Does not meet expectations
– Perhaps the Power5 is weird… Lets try another 

processor to support my theory
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CAM on AMD Opteron

• 3% drop in performance going from single 
to dual core
– Still not what I wanted
– Need to find application to support my theory
– Lets look at a broad spectrum of applications!

AMD Opteron STREAM Performance
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NERSC SSP Applications

Single vs. Dual Core Performance
(wallclock time)
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NERSC SSP Applications

Single vs. Dual Core Performanc
(wallclock time)
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• Still 10% drop on average when halving 
memory bandwidth!
– #$%^&* application developers write crummy 

code!
– Lets pick an application that I KNOW is 

memory bandwidth bound!



Lets Try SpMV

• Perhaps full application 
codes are a bad example

• Lets try a kernel like SpMV
– Should be memory bound!
– Small kernel

• Highly optimized to maximize 
memory performance
– Hand coded in Assembly
– Carefully crafted prefetch
– Exhaustive search for optimal 

block size
– Auto-search for optimal 

blocking strategy!

Reference

Best: 4x2

Mflop/s

Mflop/s

For finite element problem (BCSR) 
[Im, Yelick, Vuduc, 2005]



Example: Sparse Matrix * 
Vector

Name Clovertown Opteron Cell
Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8
Architecture 4-/3-issue, SSE, OOO, 

caches, prefetch 
2-VLIW, SIMD, 

local store, DMA
Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz
Peak MemBW 21.3 GB/s 21.3 25.6 GB/s
SPMv MemBW 7.5 GB/s 10.0 22.5 GB/s
Efficiency % 35% 47% 88%
Peak GFLOPS 75 18 15 (DP Fl. Pt.)
SPMv 
GFLOPS

1.5 1.9 3.4

Efficiency % 2% 11% 23%



What the #$%^& is going on Here!!!

• Cannot find data to support my conclusion!
– And it was a good conclusion!
– Theory was proved conclusively by correlation 

to memory bandwidth shown on slide #1!

• Correlations do not guarantee causality
– Consumption of memory bandwidth limited by 

ability to tolerate latency!
– Vendors sized memory bandwidth to match 

what processor core could consume (2nd order 
effect manufactured a correlation)



Short Diversion about Latency Hiding

• Little’s Law: bandwidth * latency = concurrency
– bandwidth * latency = #outstanding_memory_fetches

• For Power5+ single-core (theoretical): 
– 120ns * 25 Gigabytes/sec
– 3000 bytes of data in flight
– 23.4 cache lines (very close to 24 memory request 

queue depth:  The RCQ)
– 375 operands must be prefetched to fully engage the 

memory subsystem
• Other Ways to Double Concurrency

– 2x memory bandwidth: Need 6000 bytes/flight
– 2x cores: Each only needs 1500 bytes/flight
– 2 threads/core: Each needs 750 bytes/flight
– 128 slower cores/threads?:  24 bytes in flight (3 DP words)
– Vectors (not SIMD!): 64-128 words per vec load
– Software Controlled Memory (eg. Cell, ViVA)

• Need mem queue depth performance ctr!



Why is the STI Cell So Efficient?
(understanding memory subsystem response)

• Performance of Standard Cache Hierarchy
– Cache hierarchies underutilize memory bandwidth due to inability to tolerate latency
– Hardware prefetch prefers long unit-stride access patterns (optimized for STREAM)
– But in practice, access patterns are for shorter stanzas: so never reaches peak bandwidth (still latency limited)

• Cell “explicit DMA”
– Cell software controlled DMA engines can provide nearly flat response for a variety of access patterns
– Response is nearly full memory bandwidth can be utilized for all access patterns
– Cell memory requests can be nearly completely hidden behind the computation due to asynchronous DMA 

engines
– Performance model is simple and deterministic (much simpler than modeling a complex cache hierarchy), 

min{time_for_memory_ops, time_for_core_exec}

Cell STRIAD (64KB concurrency)
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Will Multicore Slam Against 
the Memory Wall?

• Memory Bandwidth Starvation
– “Multicore puts us on the wrong side of the memory 

wall.  Will CMP ultimately be asphyxiated by the 
memory wall?” Thomas Sterling

– Memory wall is NOT a problem that is caused by 
multicore (term coined in 1994).

• What about latency (other part of memory wall)
– Effective use of bandwidth is progressively inhibited 

by poor latency tolerance of modern microprocessor 
cores (memory mud rather than memory wall)

– Stalled clock rates actually halt growing gap of 
memory latency / operation

• We can fix bandwidth (but not latency)
– With current technology, we could put 8x more bandwidth onto chips then we 

currently do!  . . . GPUs and Cicso Metro already do this!
– So why don’t we do it? . . . because it is ineffective for current processor cores
– Manycore can use memory bandwidth more effectively
– Cell/Software controlled memory can use bandwidth more effectively
– Can use manycore to test system balance using controlled environment

FLOP Rate for Each Core
(single vs dual core) 
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Predicting XT4 Quad Core 
Performance
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Membench

MEMBENCH: Cray XT3 and XT4
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Apex-MAP

• Traces out 2D space of memory access patterns characterized by 
their spatial and temporal locality

• Parameter L
– Represents spatial locality
– Describes size of contiguous accesses to a given memory location

• Parameter α
– Represents temporal locality
– Exponent of a power law distribution of memory addresses

• Performance (height of the graph) is given in cycles per memory 
access

Apex-MAP
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Apex-MAP

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

0.001

0.01

0.1

1

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

C
y
cl

e
s 

p
e
r 

in
st

ru
ct

io
n

spatial locality (L)

temporal 
locality 

(a)

Single Core Apex-MAP

 

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

0.001

0.01

0.1

1

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

C
y
cl

e
s 

p
e
r 

in
st

ru
ct

io
n

spatial locality (L)

temporal 
locality 

(a)

Dual Core Apex-MAP
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Apex-MAP Conclusion

• Memory bandwidth contention explains 
most of the performance difference 
between single and dual core

• A simple latency/bandwidth model 
provides a reasonably close estimation of 
actual Apex-MAP performance 
– Residual error of the model is low
– That is to say, a simple explanation will suffice 

for dual-core performance penalty (no need to 
chase down more complex models)



Estimating Quad-Core Performance
• Assumptions

– Memory bandwidth is the only contended 
resource

– Can break down execution time into portion that 
is stalled on shared resources (memory 
bandwidth) and portion that is stalled on non-
shared resources (everything else)

– Estimate time spent on memory contention 
from XT3 single/dual core studies

– Estimate # bytes moved in memory-contended 
zone

– Extrapolate to XT4 based on increased memory 
bandwidth

• Use to validate model
– Extrapolate to quad-core



Estimating Quad-Core Performance

Execution Time Time=120s

Cray XT3 Opteron@2.6Ghz DDR400

Single Core

Dual Core Execution Time Time=180s

Execution Time
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Estimating Quad-Core Performance

Other Exec Time Memory BW

Cray XT3 

Time=160s

Opteron@2.6Ghz DDR400

Single Core

Dual Core Other Exec Time Time=230sMemory BW Contention
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Estimating Quad-Core Performance

Other Exec Time=90s 70s@5GB/s

Cray XT3 
Time=160

Opteron@2.6Ghz DDR400

Single Core

Dual Core 90s Time=230s140s@2.5GB/s

Estimated Bytes Moved = 0.36 GB

Cray XT4 Opteron@2.6Ghz DDR2-667
90s .36G/8GB/s Time=90+0.36GB/8GBs = 134sSingle Core

Dual Core 90s Time=90+0.36GB/4GB/s = 178s.36G/4GB/s
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Estimating Quad-Core Performance

Other Exec Time=90s 70s@5GB/s

Cray XT3 
Time=160

Opteron@2.6Ghz DDR400

Single Core

Dual Core 90s Time=230s140s@2.5GB/s

Estimated Bytes Moved = 0.36 GB

Cray XT4 Opteron@2.6Ghz DDR2-667
90s 44s Time=90+0.36GB/8GBs = 134sSingle Core

Dual Core 90s Time=90+0.36GB/4GB/s = 178s88s

Error
MILC Prediction for XT4 SC=134s

actual = 127s
error = 5%

MILC Prediction for XT4 DC = 178s
actual = 181s
error = 1.5%
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Testing the Performance Model

• Not too bad at predicting XT4 performance

Prediction Error
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Time Spent in Memory Contention
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Including FLOPs
Time Spent in Application
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Quad Core Prediction

Quad Core Performance Benefit
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Conclusions

• Application codes see modest impact from move 
to dual-core (10.3% avg)
– Exception is MILC, which is more dependent on memory 

bandwidth due to aggressive use of prefetch
– Indicates most application performance bounded by 

other bottlenecks (mem latency for instance)
• Memory benchmarks indicate memory bandwidth 

contention is primary source of performance drop 
when moving to dual-core

• Most of the time is spent in “other” category.

– So, how much of “other” is FLOPs?



Deep Pipelining for Sparse MVM
(Gerhard Wellein: SR8k review)

PRELOAD FOP ST
PRELOAD FOP ST

PRELOAD FOP ST

PREFETCH 
time

ite
ra

tio
n

LD
LD

LDPrefetch index 
array COL_IND

Load index from 
cache to reg

Preload single data 
item X(index)

Additional FPRs support loop
unrolling of 24 iterations!



conclusions

• Correlations don’t imply causality
– Just because it looks like performance 

is related to memory BW doesn’t prove 
that BW is the bottleneck (it could be 
inability to use available bandwidth due 
to latency)

• Multicore will enable memory 
bandwidth to become the primary 
problem (rather than latency)
– Can’t fix latency
– But we can fix bandwidth



Unifying Concern
(uniprocessor performance)

SPEC_Int benchmark performance since 
1978 from Patterson & Hennessy Vol 4.

•15 years of clock frequency scaling has ended (free lunch is over)
•Matching Moore’s Law Lithography Improvements is now linked to 
doubling concurrency every 18 months (multicore) 



Traditional Sources of Performance 
Improvement are Flat-Lining

• New Constraints
– 15 years of 

clock rate growth has ended

• But Moore’s Law 
continues!
– How do we use all of those 

transistors to keep 
performance increasing at 
historical rates?

– Industry Response: #cores 
per chip doubles every 18 
months instead
frequency!

• Is multicore the correct 
response?

exponential

of clock 

Figure courtesy of Kunle Olukotun, Lance 
Hammond, Herb Sutter, and Burton Smith



Is Multicore the Correct Response 
to New Lithography Constraints?

• Kurt Keutzer: “This shift toward increasing 
parallelism is not a triumphant stride forward 
based on breakthroughs in novel software and 
architectures for parallelism; instead, this plunge 
into parallelism is actually a retreat from even 
greater challenges that thwart efficient silicon 
implementation of traditional uniprocessor 
architectures.”

• David Patterson: “Industry has already thrown the 
hail-mary pass. . . But nobody is running yet.”



• Power limits leading edge chip designs
– Intel Tejas Pentium 4 cancelled due to 

power issues
• Yield on leading edge processes 

dropping dramatically
– IBM quotes yields of 10 – 20% on 8-

processor Cell
• Design/validation leading edge chip is 

becoming unmanageable
– Verification teams > design teams on 

leading edge processors
– Cost of new high-end chip design 

$400M+ due to rising complexity

HW: Problems?



HW Solution: Small is Beautiful

• Expect modestly pipelined (5- to 9-stage) 
CPUs, FPUs, vector, SIMD PEs
– Small cores not much slower than large cores

• Parallel is energy efficient path to performance:     
Power = CV2F
– Lower voltage, and increase parallelism lowers energy per op

• Redundant processors can improve chip yield
– Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 

CPUs
• Small, regular processors easier to verify

– This means 50-200k gates/core (not millions of gates).
• One size fits all?

– Amdahl’s Law ⇒ Heterogeneous processors?



Chris Rowen Data
QuickTime™ and a
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How Small is Small

• Power5 (server)
– 389mm^2
– 120W@1900MHz

• Intel Core2 sc (laptop)
– 130mm^2
– 15W@1000MHz

• ARM Cortex A8 (toaster oven)
– 5mm^2
– 0.8W@800MHz

• Tensilica DP (cell phones)
– 0.8mm^2
– 0.09W@600MHz

• Tensilica Xtensa (Cisco Rtr)
– 0.32mm^2 for 3!
– 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each core operates at 1/3 to 1/10th efficiency of largest chip, but you 
can pack 100x more cores onto a chip and consume 1/20 the power



Destination is Manycore

• We need revolution, not evolution
• Software or architecture alone can’t fix parallel 

programming problem, need innovations in both
• “Multicore” 2X cores per generation: 2, 4, 8, …
• “Manycore” 100s is highest performance per unit 

area, and per Watt, then 2X per generation: 
64, 128, 256, 512, 1024 …

• Multicore architectures & Programming Models good for 
2 to 32 cores won’t evolve to Manycore systems of 
1000’s of processors 
⇒ Desperately need HW/SW models that work for 
Manycore or will run out of steam
(as ILP ran out of steam at 4 instructions)
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