
National Energy Research
Scientific Computing Center
(NERSC)

About Memory Bandwidth

John Shalf
NERSC Center Division, LBNL

June 13, 2007

Memory Performance is Key

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1980 1985 1990 1995 2000

DRAM

CPU

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”
1000

Ever-growing processor-memory performance gap

• Total chip performance following Moore’s Law
• Increasing concern that memory bandwidth

may cap overall performance

Concerns about Multicore

• Memory Bandwidth Starvation
– “Multicore puts us on the wrong side of the

memory wall. Will CMP ultimately be
asphyxiated by the memory wall?” Thomas
Sterling

– While true, multicore has not introduced a new
problem

• “memory wall” first described in 1994 paper by Sally
McKee et al. about uniprocessors

• Bandwidth gap matches historical trends FLOPs on
chip doubles every 18months (just by different
means)

– Regardless it is a worthy concern

CCSM3 FVCAM Performance

• FVCAM (atmospheric component of climate model)
OBVIOUSLY correlated with memory bandwidth

• More memory bandwidth means more performance!
• So my theory is “If I move from single-core to dual-

core, my performance should drop proportional to
effective memory bandwidth delivered to each core!”
(right?)

Sustained Performance on fvCAM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Power3 Power5 BG/L Itanium2 X1E Earth
Simulator

S
u

st
a
in

e
d

 F
L
O

P
s

o
n

 f
v
C

A
M

Memory Bandwidt

0

5

10

15

20

25

30

35

Power3 Power5 BG/L Itanium2 X1E Earth Simulator

System

CAM on Power5+
(test our memory bandwidth theory)

• T85 model (spectral CAM) run sparse and dense
mode. (turn off timers for MPI operations)

• 2% performance drop (per core) when moving
from 1-2 cores

• Does not meet expectations
– Perhaps the Power5 is weird… Lets try another

processor to support my theory

Power5 Stream Triad Performance/

0

2000

4000

6000

8000

10000

12000

P5+ 1 core P5+ 2 core

M
e
g

a
b

y
te

s/
se

co
n

d

Power5+ CAM Performance/

0

500

1000

1500

2000

2500

3000

3500

4000

P5+ 1 core P5+ 2 core

O
p

 R
a
te

CAM on AMD Opteron

• 3% drop in performance going from single
to dual core
– Still not what I wanted
– Need to find application to support my theory
– Lets look at a broad spectrum of applications!

AMD Opteron STREAM Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

AMD 1 core AMD 2 core

m
e
g

a
b

y
te

s/
se

c

AMD Opteron CAM Performance/proc

0

500

1000

1500

2000

2500

3000

AMD 1 core AMD 2 core

W
a
ll
cl

o
ck

 S
e
co

n
d

s

NERSC SSP Applications

Single vs. Dual Core Performance
(wallclock time)

0

500

1000

1500

2000

2500

3000

3500

4000

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

application code

XT3 SC
XT3 DC

NERSC SSP Applications

Single vs. Dual Core Performanc
(wallclock time)

0

500

1000

1500

2000

2500

3000

3500

4000

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

application code

XT3 SC
XT3 DC

Performance drop (sing

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

CAM MILC GTC GAMESSPARATECPMEMDMadBenchBB3D Cactus

Applicat

• Still 10% drop on average when halving
memory bandwidth!
– #$%^&* application developers write crummy

code!
– Lets pick an application that I KNOW is

memory bandwidth bound!

Lets Try SpMV

• Perhaps full application
codes are a bad example

• Lets try a kernel like SpMV
– Should be memory bound!
– Small kernel

• Highly optimized to maximize
memory performance
– Hand coded in Assembly
– Carefully crafted prefetch
– Exhaustive search for optimal

block size
– Auto-search for optimal

blocking strategy!

Reference

Best: 4x2

Mflop/s

Mflop/s

For finite element problem (BCSR)
[Im, Yelick, Vuduc, 2005]

Example: Sparse Matrix *
Vector

Name Clovertown Opteron Cell
Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8
Architecture 4-/3-issue, SSE, OOO,

caches, prefetch
2-VLIW, SIMD,

local store, DMA
Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz
Peak MemBW 21.3 GB/s 21.3 25.6 GB/s
SPMv MemBW 7.5 GB/s 10.0 22.5 GB/s
Efficiency % 35% 47% 88%
Peak GFLOPS 75 18 15 (DP Fl. Pt.)
SPMv
GFLOPS

1.5 1.9 3.4

Efficiency % 2% 11% 23%

What the #$%^& is going on Here!!!

• Cannot find data to support my conclusion!
– And it was a good conclusion!
– Theory was proved conclusively by correlation

to memory bandwidth shown on slide #1!

• Correlations do not guarantee causality
– Consumption of memory bandwidth limited by

ability to tolerate latency!
– Vendors sized memory bandwidth to match

what processor core could consume (2nd order
effect manufactured a correlation)

Short Diversion about Latency Hiding

• Little’s Law: bandwidth * latency = concurrency
– bandwidth * latency = #outstanding_memory_fetches

• For Power5+ single-core (theoretical):
– 120ns * 25 Gigabytes/sec
– 3000 bytes of data in flight
– 23.4 cache lines (very close to 24 memory request

queue depth: The RCQ)
– 375 operands must be prefetched to fully engage the

memory subsystem
• Other Ways to Double Concurrency

– 2x memory bandwidth: Need 6000 bytes/flight
– 2x cores: Each only needs 1500 bytes/flight
– 2 threads/core: Each needs 750 bytes/flight
– 128 slower cores/threads?: 24 bytes in flight (3 DP words)
– Vectors (not SIMD!): 64-128 words per vec load
– Software Controlled Memory (eg. Cell, ViVA)

• Need mem queue depth performance ctr!

Why is the STI Cell So Efficient?
(understanding memory subsystem response)

• Performance of Standard Cache Hierarchy
– Cache hierarchies underutilize memory bandwidth due to inability to tolerate latency
– Hardware prefetch prefers long unit-stride access patterns (optimized for STREAM)
– But in practice, access patterns are for shorter stanzas: so never reaches peak bandwidth (still latency limited)

• Cell “explicit DMA”
– Cell software controlled DMA engines can provide nearly flat response for a variety of access patterns
– Response is nearly full memory bandwidth can be utilized for all access patterns
– Cell memory requests can be nearly completely hidden behind the computation due to asynchronous DMA

engines
– Performance model is simple and deterministic (much simpler than modeling a complex cache hierarchy),

min{time_for_memory_ops, time_for_core_exec}

Cell STRIAD (64KB concurrency)

0.000

5.000

10.000

15.000

20.000

25.000

30.000

16 32 64 128 256 512 1024 2048

stanza size

1 SPE 2 SPEs 3 SPEs 4 SPEs
5 SPEs 6 SPEs 7 SPEs 8 SPEs

Will Multicore Slam Against
the Memory Wall?

• Memory Bandwidth Starvation
– “Multicore puts us on the wrong side of the memory

wall. Will CMP ultimately be asphyxiated by the
memory wall?” Thomas Sterling

– Memory wall is NOT a problem that is caused by
multicore (term coined in 1994).

• What about latency (other part of memory wall)
– Effective use of bandwidth is progressively inhibited

by poor latency tolerance of modern microprocessor
cores (memory mud rather than memory wall)

– Stalled clock rates actually halt growing gap of
memory latency / operation

• We can fix bandwidth (but not latency)
– With current technology, we could put 8x more bandwidth onto chips then we

currently do! . . . GPUs and Cicso Metro already do this!
– So why don’t we do it? . . . because it is ineffective for current processor cores
– Manycore can use memory bandwidth more effectively
– Cell/Software controlled memory can use bandwidth more effectively
– Can use manycore to test system balance using controlled environment

FLOP Rate for Each Core
(single vs dual core)

0

50

100

150

200

250

MIL
C

GTC
PA

RA
TE

C

CA
M

MAD
CA

P
GAM

ES
S

Code Name

Singlecore
dualcore

FLOP Rate for Each Co
(single vs dual core)

0

50

100

150

200

250

MIL
C

GTC
PA

RA
TE

C

CA
M

MAD
CA

P
GAM

ES
S

Code Name

Singlecore

dualcore

Predicting XT4 Quad Core
Performance

STREAM
1 Core X T3 1 Core X T4 2 Core X T3 2 Core X T4

Copy: 5137 8196 2345 4074
Scale: 5067 7257 2348 4012
Add: 4734 7482 2309 3469
Triad: 4135 7464 2310 3626

STREAM Bandwidth

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Copy: Scale: Add: Triad:

Stream test name

1 Core XT3

2 Core XT3

1 Core XT4

2 Core XT4

Membench

MEMBENCH: Cray XT3 and XT4

-

2,000

4,000

6,000

8,000

10,000

12,000

100 1000 10000 100000 1000000 10000000 100000000 1000000000

Size (bytes)

1core XT3

1core XT4

2core XT3

2core XT4

Membench results for XT3 and XT4.

Apex-MAP

• Traces out 2D space of memory access patterns characterized by
their spatial and temporal locality

• Parameter L
– Represents spatial locality
– Describes size of contiguous accesses to a given memory location

• Parameter α
– Represents temporal locality
– Exponent of a power law distribution of memory addresses

• Performance (height of the graph) is given in cycles per memory
access

Apex-MAP

STREAM

HPL FFT

GUPS

α=0
(high)

α=1
(low)

Spatial Locality

T
em

po
ra

l
L

oc
al

ity

L=1
(low)

L=65536
(high)

1 4

16 64

25
6

10
24

40
96

16
38

4

65
53

6

0.001

0.025

0.500
0.1

1.0

10.0

100.0

1000.0

C
yc

le
s

L

α

Seaborg Sequent

2.00-3.00
1.00-2.00
0.00-1.00
-1.00-0.00

Apex-MAP

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

0.001

0.01

0.1

1

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

C
y
cl

e
s

p
e
r

in
st

ru
ct

io
n

spatial locality (L)

temporal
locality

(a)

Single Core Apex-MAP

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

0.001

0.01

0.1

1

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

C
y
cl

e
s

p
e
r

in
st

ru
ct

io
n

spatial locality (L)

temporal
locality

(a)

Dual Core Apex-MAP

Single Core Dual Core

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

0.001

0.01

0.1

1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

C
y
cl

e
s

p
e
r

in
st

ru
ct

io
n

spatial locality (L)

temporal
locality

(a)

Ratio of Single-Core to Dual Core

1 4

16 64

25
6

10
24

40
96

16
38

4

65
53

6

0.001

0.010

0.100
1.0000.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

Residual Error - Opter

Difference Residual Error for model

Apex-MAP Conclusion

• Memory bandwidth contention explains
most of the performance difference
between single and dual core

• A simple latency/bandwidth model
provides a reasonably close estimation of
actual Apex-MAP performance
– Residual error of the model is low
– That is to say, a simple explanation will suffice

for dual-core performance penalty (no need to
chase down more complex models)

Estimating Quad-Core Performance
• Assumptions

– Memory bandwidth is the only contended
resource

– Can break down execution time into portion that
is stalled on shared resources (memory
bandwidth) and portion that is stalled on non-
shared resources (everything else)

– Estimate time spent on memory contention
from XT3 single/dual core studies

– Estimate # bytes moved in memory-contended
zone

– Extrapolate to XT4 based on increased memory
bandwidth

• Use to validate model
– Extrapolate to quad-core

Estimating Quad-Core Performance

Execution Time Time=120s

Cray XT3 Opteron@2.6Ghz DDR400

Single Core

Dual Core Execution Time Time=180s

Execution Time

mailto:Opteron@2.6Ghz

Estimating Quad-Core Performance

Other Exec Time Memory BW

Cray XT3

Time=160s

Opteron@2.6Ghz DDR400

Single Core

Dual Core Other Exec Time Time=230sMemory BW Contention

mailto:Opteron@2.6Ghz

Estimating Quad-Core Performance

Other Exec Time=90s 70s@5GB/s

Cray XT3
Time=160

Opteron@2.6Ghz DDR400

Single Core

Dual Core 90s Time=230s140s@2.5GB/s

Estimated Bytes Moved = 0.36 GB

Cray XT4 Opteron@2.6Ghz DDR2-667
90s .36G/8GB/s Time=90+0.36GB/8GBs = 134sSingle Core

Dual Core 90s Time=90+0.36GB/4GB/s = 178s.36G/4GB/s

mailto:Opteron@2.6Ghz
mailto:Opteron@2.6Ghz

Estimating Quad-Core Performance

Other Exec Time=90s 70s@5GB/s

Cray XT3
Time=160

Opteron@2.6Ghz DDR400

Single Core

Dual Core 90s Time=230s140s@2.5GB/s

Estimated Bytes Moved = 0.36 GB

Cray XT4 Opteron@2.6Ghz DDR2-667
90s 44s Time=90+0.36GB/8GBs = 134sSingle Core

Dual Core 90s Time=90+0.36GB/4GB/s = 178s88s

Error
MILC Prediction for XT4 SC=134s

actual = 127s
error = 5%

MILC Prediction for XT4 DC = 178s
actual = 181s
error = 1.5%

mailto:Opteron@2.6Ghz
mailto:Opteron@2.6Ghz

Testing the Performance Model

• Not too bad at predicting XT4 performance

Prediction Error

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

Application

Error In XT4 SC prediction
Error in XT4 DC prediction

Time Spent in Memory Contention

0%

20%

40%

60%

80%

100%

CA
M

MIL
C

GTC

GAM
ES

S

PA
RA

TE
C

PM
EM

D

Mad
Be

nc
h

BB
3D

Ca
ct

us

Application

other
memory contention

Including FLOPs
Time Spent in Application

0%

20%

40%

60%

80%

100%

CAM MILC GTC GAMESS PARATEC PMEMD MadBench

Application

other
flops
memory contention

Quad Core Prediction

Quad Core Performance Benefit

0.00

0.50

1.00

1.50

2.00

2.50

2 Core XT4 4core XT4 DDR667 4 Core XT4 DDR800 4 Core XT4 DDR800 2x
FPU

System Config

Conclusions

• Application codes see modest impact from move
to dual-core (10.3% avg)
– Exception is MILC, which is more dependent on memory

bandwidth due to aggressive use of prefetch
– Indicates most application performance bounded by

other bottlenecks (mem latency for instance)
• Memory benchmarks indicate memory bandwidth

contention is primary source of performance drop
when moving to dual-core

• Most of the time is spent in “other” category.

– So, how much of “other” is FLOPs?

Deep Pipelining for Sparse MVM
(Gerhard Wellein: SR8k review)

PRELOAD FOP ST
PRELOAD FOP ST

PRELOAD FOP ST

PREFETCH
time

ite
ra

tio
n

LD
LD

LDPrefetch index
array COL_IND

Load index from
cache to reg

Preload single data
item X(index)

Additional FPRs support loop
unrolling of 24 iterations!

conclusions

• Correlations don’t imply causality
– Just because it looks like performance

is related to memory BW doesn’t prove
that BW is the bottleneck (it could be
inability to use available bandwidth due
to latency)

• Multicore will enable memory
bandwidth to become the primary
problem (rather than latency)
– Can’t fix latency
– But we can fix bandwidth

Unifying Concern
(uniprocessor performance)

SPEC_Int benchmark performance since
1978 from Patterson & Hennessy Vol 4.

•15 years of clock frequency scaling has ended (free lunch is over)
•Matching Moore’s Law Lithography Improvements is now linked to
doubling concurrency every 18 months (multicore)

Traditional Sources of Performance
Improvement are Flat-Lining

• New Constraints
– 15 years of

clock rate growth has ended

• But Moore’s Law
continues!
– How do we use all of those

transistors to keep
performance increasing at
historical rates?

– Industry Response: #cores
per chip doubles every 18
months instead
frequency!

• Is multicore the correct
response?

exponential

of clock

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith

Is Multicore the Correct Response
to New Lithography Constraints?

• Kurt Keutzer: “This shift toward increasing
parallelism is not a triumphant stride forward
based on breakthroughs in novel software and
architectures for parallelism; instead, this plunge
into parallelism is actually a retreat from even
greater challenges that thwart efficient silicon
implementation of traditional uniprocessor
architectures.”

• David Patterson: “Industry has already thrown the
hail-mary pass. . . But nobody is running yet.”

• Power limits leading edge chip designs
– Intel Tejas Pentium 4 cancelled due to

power issues
• Yield on leading edge processes

dropping dramatically
– IBM quotes yields of 10 – 20% on 8-

processor Cell
• Design/validation leading edge chip is

becoming unmanageable
– Verification teams > design teams on

leading edge processors
– Cost of new high-end chip design

$400M+ due to rising complexity

HW: Problems?

HW Solution: Small is Beautiful

• Expect modestly pipelined (5- to 9-stage)
CPUs, FPUs, vector, SIMD PEs
– Small cores not much slower than large cores

• Parallel is energy efficient path to performance:
Power = CV2F
– Lower voltage, and increase parallelism lowers energy per op

• Redundant processors can improve chip yield
– Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8

CPUs
• Small, regular processors easier to verify

– This means 50-200k gates/core (not millions of gates).
• One size fits all?

– Amdahl’s Law ⇒ Heterogeneous processors?

Chris Rowen Data
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

How Small is Small

• Power5 (server)
– 389mm^2
– 120W@1900MHz

• Intel Core2 sc (laptop)
– 130mm^2
– 15W@1000MHz

• ARM Cortex A8 (toaster oven)
– 5mm^2
– 0.8W@800MHz

• Tensilica DP (cell phones)
– 0.8mm^2
– 0.09W@600MHz

• Tensilica Xtensa (Cisco Rtr)
– 0.32mm^2 for 3!
– 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each core operates at 1/3 to 1/10th efficiency of largest chip, but you
can pack 100x more cores onto a chip and consume 1/20 the power

Destination is Manycore

• We need revolution, not evolution
• Software or architecture alone can’t fix parallel

programming problem, need innovations in both
• “Multicore” 2X cores per generation: 2, 4, 8, …
• “Manycore” 100s is highest performance per unit

area, and per Watt, then 2X per generation:
64, 128, 256, 512, 1024 …

• Multicore architectures & Programming Models good for
2 to 32 cores won’t evolve to Manycore systems of
1000’s of processors
⇒ Desperately need HW/SW models that work for
Manycore or will run out of steam
(as ILP ran out of steam at 4 instructions)

	Memory Performance is Key
	Concerns about Multicore
	CCSM3 FVCAM Performance
	CAM on Power5+�(test our memory bandwidth theory)
	CAM on AMD Opteron
	NERSC SSP Applications
	NERSC SSP Applications
	Lets Try SpMV
	Example: Sparse Matrix * Vector
	What the #$%^& is going on Here!!!
	Short Diversion about Latency Hiding
	Why is the STI Cell So Efficient?�(understanding memory subsystem response)
	Will Multicore Slam Against �the Memory Wall?
	Predicting XT4 Quad Core Performance
	STREAM
	Membench
	Apex-MAP
	Apex-MAP
	Apex-MAP Conclusion
	Estimating Quad-Core Performance
	Estimating Quad-Core Performance
	Estimating Quad-Core Performance
	Estimating Quad-Core Performance
	Estimating Quad-Core Performance
	Testing the Performance Model
	Including FLOPs
	Quad Core Prediction
	Conclusions
	Deep Pipelining for Sparse MVM�(Gerhard Wellein: SR8k review)
	conclusions
	Unifying Concern�(uniprocessor performance)
	Traditional Sources of Performance Improvement are Flat-Lining
	Is Multicore the Correct Response to New Lithography Constraints?
	HW: Problems?
	HW Solution: Small is Beautiful
	Chris Rowen Data
	How Small is Small
	Destination is Manycore

