SOS11 Conference

Key West, Florida

aaaaaaaaaaaaaaaaaaaaaaaa

Some of the Software Challenges for
Numerical Linear Algebra Libraries to
Run at Sustained Petascale Level

Jack Dongarra
INNOVATIVE COMPUFING LABORATORY

University of Tennessee
Oak Ridge National Laboratory

©/15/2007

(\

W

< Qutline

e Impact of Multicore

* Using Mixed Precision in Numerical
Computing

e Hybrid Architectures

e Self Adapting

* Fault Tolerant Methods

IcLOr"

Time to Rethink Software Again

e Must rethink the design of our software

= Another disruptive technology

»Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

 Numerical libraries for example will change

= For example, both LAPACK and ScaLAPACK
will undergo major changes to accommodate
this

(\

<= Major Changes to Math Software

e Scalar
= Fortran code in EISPACK

 Vector
= Level 1 BLAS use in LINPACK
e SMP
= Level 3 BLAS use in LAPACK
e Distributed Memory
= Message Passing w/MPI in ScaLAPACK
e Many-Core

= Event driven multi-threading in PLASMA
» Parallel Linear Algebra Software for Multicore Architectures

Ei:—‘;

IcLLOr"

Parallelism in LAPACK / ScaLAPACK

Shared Memory Distributed Memory

LAPACK ScaLAPACK

<
g

Two well known open source software efforts for dense matrix problems.
5

|9llered

< Steps in the LAPACK LU

DGETF2 LAPACK
(Factor a panel)

DLSWP l LAPACK
(Backward swap) ‘

DLSWP ﬂ LAPACK
(Forward swap) /\

. DTRSM l l l l BLAS
(Triangular solve)
s

DGEMM J l l l BLAS
(Matrix multiply) Most of the work

W done here

£ LU Timing Profile (4 Core System)

Threads — no lookahead

' NN EEEEE RN

— ENNNEN-INNNNN NEENN—RNANE-HRNNI-

Time for each comp

onent

O

Ol

///

o
ol
!

O O

Bulk Sync Phases

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

>1D decomposition

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

EEOEO

<=
<&
>< >~__—_
<&
<&

—
—
—
—

<

£. Adaptive Lookahead - Dynamic

cor-

_
0

|

i

S

Event Driven Multithreading
Out of Order Execution

%\
\ |
QR

A

O O

while (1)
fetch task();
switch (task.type) {
case PANEL:
dgetf2 () ;
update_progress () ;
case COLUMN:

dlaswp () ;

dgemm () ;
update_progress () ;

case END:

for ()

dlaswp () ;
return;

Reorganizing
algorithms to use
this approach

~. Fork-Join vs. Dynamic Execution

AR K il

—
—
—
—

1111

Fork-Join — parallel BLAS

V|

Time

Experiments on
Intel’s Quad9 Core Clovertown
with 2 Sockets w/ 8 Treads

~. Fork-Join vs. Dynamic Execution

AR Kk = A Fork-Join — parallel BLAS
NENNNEEN DNDENNN NNENENE NDNENENN NNNNNEN NNNENEE DONNENY NNEREED
HENNNEN] FNNNNENE] DNNNNDNE NEANENN NENDENNN ENENDEN ENENDNY DNEREND
— — HENNNNNE DEENEANY AENERENY AREEETED DNDENENY DEREEES TRENERY REREEEY
— - e - RNNNNE NRANNNN NRNNN NNENNNN NWNNANN NRNNSEN ARERUEW DRNREN
— —) >
- - Time
@
\I ® @ DAG-based — dynamic scheduling
 HNNNEERNEEEENENENEENE NEINIEEEENINNENENEEE EENANINIENEEEER
1 NINIEENIENENEENIENENE EENIEEINEEEENEENEEE ENERININEEEER
NIl EEEEEEENEENEINIENESE NENENIENENENENENE NENEENEEEER
@ AEBTRRINEY HEMERNUILNMEEHANIENS ENUNNNMAUCNERORRT EAREEN
NNEENENENENEE NEEENNEENEENENENEEEE EENENENENENNNEEND EEER
HNNRENENENNEENNEEE EREEEENEEENEENENEEE ENNNENEENINEEEER
—
Time
saved

Experiments on
Intel’s QuaqOCore Clovertown
with 2 Sockets w/ 8 Treads

cLor Fork-Join vs. Dynamic Execution

Breaking the “hour-glass” pattern
of parallel processing

LU Factorization Cholesky Factorization QR Factorization

Dynamic

Dynamic Dynamic

Fork-Join
Fork-Join

Fork-Join

Intel Clovertown
clock - 2.66 GHz
2 sockets - quad-core
) 8 cores total

11

ICL

Intel’s Clovertown Quad Core

3 Implementations of LU factorization 1. LAPACK (BLAS Fork-Join Parallelism)

Quad core w/2 sockets per board, w/ 8 Treads 2 SCaLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)

45000

40000 -

35000 -/.

30000

9 25000

S /
2 /
[

=

20000

/
15000 K

10000 &

[B N N
5000 - elel|] e
& S

o I I I I I I I I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 1300C

/ 8 Core Experiments

Problems Size i L W

 What about the potential of FPGA or
hybrid core processors?

o e

Clock and Power Planes o
=]

Core 0 Core 1 .
L P

¢ What about the IBM’s s
Cell Processor?

e 9 Cores

= Power PC at 3.2 GHz
= 8 SPEs

e 204.8 Gflop/s peak!

" The catch is that this is for 32 bit floating
point; (Single Precision SP)

= And 64 bit floating point runs at 14.6 Gflop/s
total for all 8 SPEs!!

» Divide SP peak by 14; factor of 2 because of DP and 7
because of latency issues

8 bytes £ 16bytes 128 bytes
\F (perdin & (one dir) (one din

The SPEs are fully IEEE-754 compliant in double precision.

In single precision, they only implement round-towards-zero, denormalized
numbers are flushed to zero andtNaNs are treated like normal numbers.
PowerPC part is fully IEEE compliant.

IcLOr"

Moving Data Around on the Cell

SPE SPE SPE SPE
SPU SPU SPU SPU | 25.6 GFlops SP
LS LS LS LS 1.82 GFlops DP
256 KB
>
g < R
>
PPE ("~ - - \\\
MEM
PPU 204.8 GB/s)
25.6 GB/s «—25.6 GB/s
Injection bandwidth Injection bandwidth
LS LS LS LS
SPU SPU SPU SPU
SPE SPE SPE SPE

Worst case memory bound operations (no reuse of data)
3 data movements (2 in and 1 out) with 2 ops (SAXPY)
For the cell would be 4.6 Gflop/s (25.6 GB/s*20ps/12B)

¢ On the Way to Understanding How to Use
the Cell Something Else Happened ...

ICL

Realized have the
similar situation on
our commodity
processors.

» That is, SP is 2X

faster than DP on
many systems

Standard Intel
Pentium and AMD
Opteron have SSE2

» 2 flops/cycle DP
> 4 flops/cycle SP

IBM PowerPC has
AltiVec

> 8 flops/cycle SP

» 4 flops/cycle DP
» No DP on AltiVec

Speedup Speedup

Size SGEMW/ Size SGEMV/

DGEMM DGEMV
AMD Opteron 246 3000 2.00 5000 1.70
Sun UltraSparc-lle 3000 1.64 5000 1.66
Intel PIll Coppermine| 3000 2.03 5000 2.09
PowerPC 970 3000 2.04 5000 1.44
Intel Woodcrest 3000 1.81 5000 2.18
Intel XEON 3000 2.04 5000 1.82
Intel Centrino Duo 3000 2.71 5000 2.21

Two things going on:
« SP has higher execution rate and
¥ ess data to move.

N

< 32 or 64 bit Floating Point Precision?

 Along time ago 32 bit floating point was used
= Still used in scientific apps but limited

* Most apps use 64 bit floating point
= Accumulation of round off error

» A 100 TFlop/s computer running for 4 hours performs >
1 Exaflop (10*8 ops.)

lll conditioned problems
IEEE SP exponent bits too few (8 bits, 10*38)

Critical sections need higher precision
» Sometimes need extended precision (128 bit fl pt)

However some can get by with 32 bit fl pt in some parts

* Mixed precision a possibility
= Approximate in lower precision and then refine or

improve solution to high precision.

17

N

< |dea Something Like This...

« Exploit 32 bit floating point as much as possible.
= Especially for the bulk of the computation

e Correct or update the solution with selective use of
64 bit floating point to provide a refined results

e |ntuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using selected
higher precision and,

= Perform the update of the 32 bit results with the
correction using high precision.

16

&

W

“* 32 and 64 Bit Floating Point Arithmetic

* |terative refinement for dense systems, Ax =b, can

work this way.
L U = lu(A)

x = L\(U\b)

r=b—Ax
WHILE || r || not small enough

z = L\(U\r)

X=X+2

r=b—Ax
END

= Wilkinson, Moler, Stewart, & Higham provide error bound results
when using working precision.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n?®) work is done in lower precision
O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(10%)

& Results for Mixed Precision Iterative
Refinement for Dense Ax = b

— e Architecture (BLAS)

Intel Pentium Il Coppermine (Goto)
Intel Pentium 111 Katmai (Goto)
Sun UltraSPARC lle (Sunperf)

25

Intel Pentium IV Prescott (Goto)

Intel Pentium IVV-M Northwood (Goto)

AMD Opteron (Goto)
Cray X1 (libsci)
IBM Power PC G5 (2.7 GHz) (VecL.ib)

Speedup wrt double precision

O© 00N | OB W| N

Compaqg Alpha EV6 (CXML)

[EEN
o

IBM SP Power3 (ESSL)

1 2 3 =

5 6 7 8 9 10 11
Architecture

[EEY
[EEY

SGI Octane (ATLAS)

* Single precision is faster than DP because:
= Higher parallelism within vector units
> 4 ops/cycle (usually) instead of 2 ops/cycle
= Reduced data motion
» 32 bit data instead of 64 bit data

= Higher locality in cache
> More data items in cache

& Results for Mixed Precision Iterative
Refinement for Dense Ax = b

e Architecture (BLAS)

=l | Intel Pentium I11 Coppermine (Goto)
Intel Pentium 111 Katmai (Goto)

Sun UltraSPARC lle (Sunperf)

Intel Pentium IV Prescott (Goto)

Intel Pentium IVV-M Northwood (Goto)
AMD Opteron (Goto)

Cray X1 (libsci)

IBM Power PC G5 (2.7 GHz) (VecL.ib)
Compaqg Alpha EV6 (CXML)

10 | IBM SP Power3 (ESSL)

6 7 8 8 10 11 | SGI Octane (ATLAS)

5
Architecture

Speedup wrt double precision

O© 00N | OB W| N

T gnirog

Architecture (BLAS-MPI) # procs n DP Solve DP Solve #
/SP Solve /1ter Ref iter

AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto — OpenMPI MX) 64 32000 1.90 1.83 6

* Single precision is faster than DP because:
= Higher parallelism within vector units
> 4 ops/cycle (usually) instead of 2 ops/cycle
= Reduced data motion
» 32 bit data instead of 64 bit data

= Higher locality in cache
> More data items in cache

&

< |IBM Cell 3.2 GHz, Ax=b

Cell

250
200 ¢ ¢—¢—0—0—¢—0—¢0—0—0—0—0—0—0—
) 8 SGEMM (Embarrassingly Parallel
—&— SP Peak (204 Gflop/s)
~#— SP Ax=b IBM
150 +—— .30 secs
% DP Peak (15 Gflop/s)
Q.
2 —¥=DP Ax=b IBM
U]
100
50
3.9 secs
Wﬁﬂexwxxxxxxx
O T T T T T
500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Size

22

Cell

r—r——¢

.30 secs

47 secs

3X

3500 4000

A

3.9 secs

4500

N
A
ICL -—
IBM Cell 3.2 GHz, Ax=Db
250
uy |
8 SGEMM (Embarrassingly Parallel)
—o— SP Peak (204 *CToprs) —
—8— SP Ax=b IBM
150 +—— DSGESV
2 DP Peak (15 Gflop/s)
§ —¥=DP Ax=b IBM
100
) /I/./
ﬁ" S —— e ——X
0 T T T
2000 2500 3000

500 1000 1500

Matrix Size

25

0. LINPACK Benchmark

ICL

| Potential Realized

Number

Computer of Procs R Nopax Nyp Rpoar
(Full Precision) or Cores GFlop/s Order Order GFlop/s

Cray T3D 1024 (150 MHz) 1024 100.5 81920 10224 152
Sun Ultra HPC10000 Cluster/4(250 MHz,4AMB 1L2) 256 100.4 80640 22528 128
IBM SP (375 MHz POWERS3) 88 99.7 88000 132.0
SGI Origin 2000 250/300 MHz Cluster (2x64x250+2x64x300) 256 98.87 81920 81920 140.8
Sun Fire 6900 (UltraSPARC IV, 1.2 GHz) 48 98.26 96116 8300 115.2
IBM Cell BE (3.2 GHz)™*** 9 98.05 1536 204552000
SGI Altix 3000, 900 MHz 32 97.67 82079 82079 115
HP Integrity rx7640 (1.6GHz/18MB Dual-Core Itanium 2) 16 96.85 76520 4320 102.4
[[BM eServer pSeries 690 Turbo(1.3 GHz Power 4) 32 95.26 108000 7000 166.4
Cray X-1 (800 MHz) 8 95.2 61440 5632 102.4
Fujitsu VPP700/46 (7nsec) 46 943 100280 8280 101
SGI Origin 300 (500 MHz, w/Myrinet) 128 94.15 81920 81920 128
HP 9000 rp8420-32 (1000MHz PA-8800) 32 94.1 58960 5200 128
Sun Fire 15K (1050MHz/8MB ES) 56 94.06 96116 10000 117.6
IBM S80s (450 MHz, SP switch) 192 93.87 82000 21000 173
ClearSpeed CSX600 Advance accelerator boards (dual
ClearSpeed boards each 250 MHz) (frontend HP ProLiant
DL380 G5, dual node Intel Xeon 5100 dual core, 3 GHz) 6 933 45000 240

{1
<~ Quadruple Precision

n Quad Precision Iter. Refine. Intel Xeon 3.2 GHz
Ax=Db DP to QP
time (s) time (s) Speedup Reference
implementation of
100 0.29 0.03 9.5 the
quad precision
200 2.27 0.10 20.9 BLAS
300 7.61 0.24 30.5
Accuracy: 10-32
400 17.8 0.44 40.4
500 34.7 0.69 49 7 No more than 3
steps of iterative
600 60.1 1.01 99.0 refinement are
700 94.9 1.38 68.7 needed.
800 141. 1.83 77.3
900 201. 2.33 86.3
1000 276. 2.92 04.8
« Variable precision factorization (with say < 32 bit precision) plus 64 bit 25

refinement produces 64 bit accuracy

(\

< Sparse Direct Solver and Iterative Refinement

MUMPS package based on multifrontal approach which
generates small dense matrix multiplies

Opteron w/Intel compiler
Speedup Over DP

T

E lterative Refinement
O Single Precision

1.8 1l il
16 — Il
1.4 —1IN L AT
1.2 I [H] g
n I

fi | |]
0.8

5 |
|
|

0.4+

0
0.6- %

0.2+
o LTS
G 8. o 4 I
S %, %, X % oL @ |
% % % S %, % 5 4 4 4 .
MRS q:‘9‘9 {‘%\, 0@6 %o%\é@ %6:, 5 > 4/%0 /L%OO’C//, ‘9@% ENENRY ’o,‘ L
S B, o, Ny N % R, R, % %y,
% < %
\O? <

Tim Davis's Collection, n=100K - 3M

(\

»
ICL

Sparse Iterative Methods (PCG)

e OQuter/Inner Iteration Inner iteration:

Outer iterations using 64 bit floating point In 32 bit floating point

T Compute @ = b — Az'® for some initial guess #(?)
Compute (9 = b — Az(9 for some initial guess z(%) for i=1,2,...
T solve Mzli=1) = p(i=1)
for 1=1,2,... o = pli=17 51

solve Mz(i=1) = p(i-1) ifi=1
(1) — ~(0)
. i . Pt =z
Pi—-1 = ?"(1_1) Z(l_l) else
o G =picifpia
ifi=1 ot g
1) 0 endif
p() f— Z() q':f:'f_.-h_,':f] B
else a; = pimy [P g
20) = (=1 4 api)
Bi—1 = pi-1/pi-s PO = i) — g
p(ij _ z(i_lj + 61._1;0(1'_1‘) nd check convergence; continue if necessary
endif
o) — Ap()

a; = i1 /pD" ¢

() = (=1 4 q.p0)

P() = pli=1) — g, 400

check convergence; continue if necessary
end

e Quter iteration in 64 bit floating point and inner iteration
in 32 bit floating point

27

L

IcLOr"

2.5
2.25

Mixed Precision Computations for
Sparse Inner/Outer-type Iterative Solvers

1.757
1.57
1.257

0.757
0.57
0.251

Speedups for mixed precision

Inner SP/Outer DP (SP/DP) iter. methods vs DP/DP
(CG?, GMRES?, PCG?, and PGMRES? with diagonal prec.)

(Higher is better)

mCG?
B PCG
B GMRES’
B PGMRES

11,142 25,980 79,275 230,793 602,091

1.25

Iterations for mixed precision
SP/DP iterative methods vs DP/DP

(Lower is better)

Machine:
Intel Woodcrest (3GHz, 1333MHz bus)

Stopping criteria:
Relative to r, residual reduction (10-1?)

11,142 25,980 79,275 230,793 602,091 <+—— Matrix size

.- 28
6,021 18,000 39,000 120,000 240,000 <—— Condition number

e
<= |ntriguing Potential

* Exploit lower precision as much as possible
= Payoff in performance
» Faster floating point
» Less data to move
e Automatically switch between SP and DP to match the
desired accuracy
= Compute solution in SP and then a correction to the solution in DP

« Potential for GPU, FPGA, special purpose processors

= What about 16 bit floating point?

» Use as little you can get away with and improve the accuracy
* Linear systems and Eigenvalue, optimization problems,
where Newton’s method is used.

_ S (xi)
J(xq)

_ J(xi)
— - Correction = - A\(b — Ax)
17 (xi)

Xi+1 = Xj

IcLOr"

How to Deal with Complexity?

« Adaptivity is the key for applications to
effectively use available resources whose
complexity is exponentially increasing

e Goal:

= Automatically bridge the gap between the
application and computers that are rapidly changing
and getting more and more complex

¢.Self Adapting
" Numerical Software

e Optimizing software to exploit the features of a
system has historically been an exercise in
hand customization.

= Time consuming and tedious

= Hard to predict performance from source code “IFit's so eficient, why doesn't it fix itself!™
= Must be redone for every architecture and compiler

» Software technology lags hardware/architecture

» Best algorithm may depend on input, so some tuning may be
needed at run-time.

e With good reason scientists expect their computing tools to
serve them and not the other way around.

e There is a need for quick/dynamic deployment of optimized
routines.

= ATLAS, PhiPAC, BeBoP, Spiral, FFTW, GCO, ...

N
““Examples of Automatic Performance Tuning

Dense BLAS

= Sequential

= ATLAS (UTK) & PHiPAC (UCB)

* Fast Fourier Transform (FFT) & variations
= FFTW (MIT)

= Sequential and Parallel

= www.fftw.org

Digital Signal Processing

"= SPIRAL: www.spiral.net (CMU)

MPI Collectives (UCB, UTK)
 More projects, conferences, government reports,

C

IcLOr"

Generic Code Optimization

e Can ATLAS-like techniques be applied to arbitrary code?

« What do we mean by ATLAS-like techniques?

« Referred to as empirical optimization

Blocking

Loop unrolling

Data prefetch

Functional unit scheduling
etc.

Generate many variations

Front End
Parser

| Generator

Driver

Testing

&

» Loop Analyzer

*| Driver

g

+Code Generator

tuning
parameters

info of tuning
parameters

Search Engine

" Pick the best implementation by measuring the performance

< MADNESS Kernel Tuning

e Code from Robert Harrison at ORNL

e Extract matrix-vector multiply
kernel from doitgen routine

e Design specific code generator for small
size matrix-vector multiplication

* Tune optimal block size and unrolling
factor separately for each input size

MFLOPS

2500

2000

1500

1000

500

MFLOPS Opteron (1.8 GHz)

—e— auto-tuned C matrix-
vector kernel

—&— hand-tuned Fortran
multi-resolution
kernel

reference kernelin C

(A
1

"‘T ‘I 1 I | I | 1 I | I | 1 I LI | 1 I LI | 1 I | I | 1 I | I | 1 1 | I |

1 4 /7 10 13 16 19 22 25 28 31
SIZE

MFLOPS

4000

MFLOPS Woodcrest (3.0 GHz)

3500

3000

2500

2000

1500

v
‘y

1000

—— auto-tuned C matrix-
vector kernel

—&— hand-tuned Fortran
multi-resolution
kernel

reference kernelin C

500

1

A

4

/7 10

13 16
SIZE

19

22

25

-"‘1-{ ‘I 1 1 1 1 1 1 1 1 1 I I I I I I I I I 1 1 1 1 1 1 1 1 1

28

(\

< Applying Self Adapting Software

 Numerical and Non-numerical applications
= BLAS like ops / message passing collectives

 Static or Dynamic determine code to be used
* Perform at make time / every time invoked

* Independent or dependent on data presented

= Same on each data set / depends on properties
of data

37

 Three Ideas for Fault Tolerant

ICL

Linear Algebra Algorithms

> Lossless diskless check-pointing for

iterative methods

» Checksum maintained in active processors
» On failure, roll back to checkpoint and

continue
> No lost data

Diskless Checkpointing

P4

¢ When failure occurs:

> control passes to user
supplied handler

> “subtraction” performed
to recover missing data

» P4 takes on role of P1
» Execution continue

P4 takes on the identity of P1
and the computation continues.

= ()
P2 P3
PO

P2 P3

P4

PO

P2

& L

P3

 Three Ideas for Fault Tolerant D2ikies Checkpointng

ICL

Linear Algebra Algorithms

>

>

>

> Lossy approach for iterative methods

» No checkpoint for computed data
maintained

» On failure, approximate missing data
and carry on

> Lost data but use approximation to
recover

¢ When failure occurs:
> contro| passes to user

P4

supplied handler
“subtraction” performed
to recover missing data

7 P4 takes on raole of P1
Execution continue

P4 takes on the identity of P1
and the computation continues.

PO

P4

P2 P3 1

Lossy Algorithm : Basic Idea

+ Let us assume that the exact solution of
the system Ax=b is stored on different

processors by rows

A

Processor 4

Processor 5

X
Processor 1
Processor 2
- Processor 3

Processor 6

3 steps

Step 1: recover a processor and a
running parallel environment (the job
of the FT-MPI library)
Step 2: recover Ay; Agy, ..., Ap and by
(the original data) on the failed
processor
Step 3: Notice that

Agy X3 + Ay Xo + .. + Ay X, = b=

| Xy = A1 (b, ~ Ziwhy; xi)‘

¢ Three Ideas for Fault Tolerant P Checkpoining
Linear Algebra Algorithms

» contro| passes to user
supplied handler

P4 # “subtraction” performed
to recover missing data
P4 takes on raole of P1

Execution continue

P4 takes on the identity of P1
and the computation continues.

Pﬂ/’\ PO

>

> Lossy Algorithm : Basic Ideca

+ Let us assume that the exact solution of
> the system Ax=b is stored on different
processors by rows

3 steps
A X

Step 1: recover a processor and a
> % Processor 1 running parallel environment (the job

Processor 2 of the FT-MPI library)
Processor 3 Step 2: recover Ay Ay, ..., A, and by
(the original data) on the failed
processor
Step 3: Notice that

A + A v+ + A ¥ =bh=

PACK/PBLAS Matrix Multiplication

Processor 4

Processor 5

Processor 6

>

f 4_11 4_1, A B, B, Z f:IBU\
» Check-pointless methods for dense A e T s v s
. I\Z Pl 1a Z f—l “if‘.f /I A 2 = =1 ”)
algorithms
. . c,, (o Z .Gy
» Checksum maintained as part of) ,
computation [5er = mres Bomed

> No roll back needed; No lost data

+ Single failure during computation can be recovered from the checksum
relationship

+ By using a floating-point version Reed-Solomon code, multiple failures can
be tolerated

r~. Three Ideas for Fault Tolerant
~" Linear Algebra Algorithms

e Large-scale fault tolerance
= adaptation: resilience and recovery

= predictive techniques for probability of failure

» resource classes and capabilities
» coupled to application usage modes

= resilience implementation mechanisms

» adaptive checkpoint frequency
» In memory checkpoints

e By monitoring, one can identify
= PAPI
= performance problems
= failure probability h
« When potential of failure L]
" Migrate process to another processor A

Opteron(1400 MHZ)
HPL Benchmark pdgesvk2 n=7200 Node 7

(\

< Multi, Many, ..., Many-More

e Multi, Many, Many-MoreCore are here and
coming fast
= Parallelism for the masses

 Programming models needs to be more
human-centric and engage the full range of
issues associated with developing a parallel
application on manycore hardware.

* Autotuners should take on a larger, or at
least complementary, role to compilers in
translating parallel programs.

47

(\
A
ICL

Summary of Current Unmet Needs

Performance / Portability

Memory bandwidth/Latency

Fault tolerance

Adaptability: Some degree of autonomy to self optimize, test, or monitor.
= Able to change mode of operation: static or dynamic

Better programming models
= Global shared address space
= Visible locality

Maybe coming soon (incremental, yet offering real benefits):

= Global Address Space (GAS) languages: UPC, Co-Array Fortran, Titanium,
Chapel, X10, Fortress)

> “Minor’” extensions to existing languages
» More convenient than MPI
» Have performance transparency via explicit remote memory references

What's needed is a long-term, balanced investment in
hardware, software, algorithms and applications in the HPC
Ecosystem.

45

&

<= Collaborators / Support

Alfredo Buttari
Julien Langou
Julie Langou
Piotr Luszczek
Jakub Kurzak
Stan Tomov

Sclence

NWERG Y

P A _('5"“ Office of

Google

Web Images Video News Maps Deskiop more »

dangarra | Advanced Search
iy g Preferences

[Google Search][I'm Feeling Lucl-cy& Language Tools

Mew! Try Docs & Spreadsheets and share your projects instantly.

Advertising Programs - Business Solutions - About Google

@2006 Google

C

< Users Guide for SC on PS3

e SCOP3: A Rough Guide
to Scientific
Computing on the
PlayStation 3

e See webpage
for details

SCOP3

A Rough Guide to Scientific Computing On the PlayStation 3
Technical Report UT-C 585

Piotr Luszczek

aaaaaaa

