
Programming Models Programming Models
for Sustained Petaflops

David E. Bernholdt, Wael R. Elwasif, Robert
J. Harrison, and Aniruddha G. Shet

Oak Ridge National Laboratory

SOS 11 1SOS 1111-14 June 2007 111-14 June 2007

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Dept. of Energy under contract DE-AC-05-00OR22725.

Today: Approaching a Peak Petaflop

H d h t i ti (100 300 T fl k)• Hardware characteristics (~100-300 Teraflops peak)
– 10,000-100,000 processors
– 2-4 cores per processor

Homogeneous processor environment– Homogeneous processor environment

• Application characteristics
– Scaling up problem size/resolution
– Increasing physical fidelity/model complexity
– Early explorations of coupled simulation

• Dominant programming modelDominant programming model
– Sequential language (Fortran)
– 2-sided messaging library (MPI)
– threads (OpenMP)

SOS 11 211-14 June 2007

(p)
– Age: ~30 years

Tomorrow: Sustained Petaflops Tomorrow: Sustained Petaflops
and Beyond

• Hardware characteristics (10-100 petaflops peak)• Hardware characteristics (10-100 petaflops peak)
– 100,000-1,000,000 processors
– 100-1,000 cores per processor
– Heterogeneous processor environment may be commonHeterogeneous processor environment may be common

• Example: LANL Roadrunner: Opteron, PowerPC, Cell
• Also GP-GPUs, integrated GPUs, FPGAs, etc.

• Application characteristicsApplication characteristics
– Scaling up problem size/resolution leveling off
– Increasing physical fidelity/model complexity
– Serious coupled simulationp
– Serious algorithmic scaling challenges
– Increase in adaptive representations, irregular computations
– Increase in community-wide code sharing

SOS 11 311-14 June 2007

• Dominant programming model
– ???

Fortran+MPI+OpenMP Forever?p
• I hope not!

– The “assembly language” of parallel programming

• Pushes too much complexity onto the programmer
– Explicit/local management of complex distributed data structures
– Coordination among O(106-108) communication endpoints, more g () p ,

threads

• Parallelism bolted on to sequential language makes
program expression, comprehension, tuning, etc. harderp g p , p , g,

• Fortran is still relatively low level
– Expresses basic computations, but not domain abstractions

F2003 better but not widely used (implemented?) yet– F2003 better, but not widely used (implemented?) yet

• MPI emphasizes the mechanics of data movement,
obscures scientific problem and abstractions

SOS 11 411-14 June 2007

• OpenMP is mostly about loop-level parallelism, but much
more is needed

The Nature of Scientific The Nature of Scientific
Programming has Changed

• It used to be that straightforward FORmula
TRANslation was sufficient

• Now, it involves the manipulation of complex,
hierarchical abstractions in environments requiring
huge levels of concurrencyhuge levels of concurrency

• The change has been incremental, and the tools are
still just doing formula translationj g
– Boiled frog analogy

• Programming models must make a leap!

SOS 11 511-14 June 2007

What’s the Alternative?
• Higher-level core languageHigher level core language
• Integrated concurrency
• Global view of data
• PGAS (Partitioned Global Address Space)?

– Co-Array Fortran (CAF)
Unified Parallel C (UPC)– Unified Parallel C (UPC)

– Titanium

• HPCS (High Productivity Computing Systems)
– Chapel (Cray)
– Fortress (Sun)
– X10 (IBM)

SOS 11 611-14 June 2007

• Domain-specific languages
– What to build upon?

PGAS is Not Enough

• Simplest possible extension to {Fortran,C,Java} to
provide basic parallelism

B l t hi h h l l• Base languages are not high enough level

• Each language has a variety of problems and
limitationslimitations
– CAF doesn’t really provide a global view of data
– UPC only understands distributed arrays in 1d, hard to

optimizeoptimize
– Titanium is a dialect of Java

• A step in a positive direction

SOS 11 711-14 June 2007

– But not a large enough step
– Possibly useful in a transitional sense (more later)

HPCS Languages: Core Features

• Rich array data types

• Strongly typedg y yp

• Object oriented model
– Distinction between reference and value typesDistinction between reference and value types

• Generic programming

St l lib i t d• Strongly library oriented

• Extensible language model (more later)

SOS 11 811-14 June 2007

Productivity Features
• Index sets/regions for arrays, etc.

– “Array language” (Chapel, X10)

• Safe(r) and more powerful language constructs
Atomic sections vs locks– Atomic sections vs locks

– Sync variables and futures
– Clocks (X10)

• Type inference

• Leverage IDE environments

• Units and dimensions (Fortress)

• Component management, testing, contracts (Fortress)

SOS 11 911-14 June 2007

• Math/science-based presentation (Fortress)

Concurrency

• Not SPMD!
– Initially single thread of control, parallelism through languageInitially single thread of control, parallelism through language

constructs

• True global view of memory, one-sided access model
• Support for both task and data parallelism
• “Threads” grouped by “memory locality”

Explicitly two level (Chapel X10) or hierarchical (Fortress)– Explicitly two level (Chapel, X10), or hierarchical (Fortress)

• Rich distributed array capability
– Programmer-provided distribution details

• Parallel loops
• “Generator” concept used widely for loops, distributions

SOS 11 1011-14 June 2007

• Futures
– Local and remote

Fock Matrix Construction
••

(Quantum Chemistry)
Fμν← Dλσ { 2 (μν|λσ) - (μλ|νσ) }Fμν← Dλσ { 2 (μν|λσ) (μλ|νσ) }

• Indices μ, ν, λ, σ represent basis functions (N)
• F is Fock matrix, D is density matrixs oc at , s de s ty at

– Held in core

• (μν|λσ) are “two-electron repulsion integrals”
Due to permutational symmetries only O(N4/8) unique– Due to permutational symmetries, only O(N4/8) unique

– Can be evaluated on the fly

• In integral-driven algorithm, each integral contracts with six
diff t D l t t ib ti t i diff t Fdifferent D elements, contributing to six different F
elements

• Challenge: irregularity

SOS 11 1111-14 June 2007

g g y
– Integrals evaluated in blocks of varying size (1-10,000+ integrals)
– Average 500 FLOPs per integral, but wide variation

Scalable Fock Build Algorithm
•••

Hierarchically blocked, dynamically load balanced, integral-driven

task-local working blocks

D F
D, F
global-view
distributed
arrays

task local working blocks

Integrals (μν|λσ)

arrays

work pool
of integral g (μ |)

P0 P1 P2 P3 P4 …

• Idea first implemented by Furlani and King (1995) using MPI
– Efficient implementation (up to 16 CPUs) required heroic effort

g
blocks

Efficient implementation (up to 16 CPUs) required heroic effort
– Privately, approach not considered viable in general

• Inspired development of Global Array Toolkit (PNNL)
– Library-based implementation of PGAS concepts

SOS 11 1211-14 June 2007

y p p

• NWChem implementation (1995) using GA scales to 1000s of CPUs
– Simple to code

Fock Build Code Snippets (1)

• Defining a distributed array (X10)• Defining a distributed array (X10)
final region Dregion = [1:n, 1:n];
final dist Ddist = dist.factory.block(Dregion);
fi l d bl [] F d bl [Ddi t]final double [.] F = new double [Ddist];

• Local working copy of D block (Chapel)
const ij points = [ilo..ihi, jlo..jhi];const ij_points [ilo..ihi, jlo..jhi];
const Dij = D(ij_points);

• Atomic update of global F from working block (X10)
final double value [.] Fij_val = Fij.toValueArray();
ateach(point [i,j] : Ddist | [ilo:ihi, jlo:jhi])

atomic F[i,j] += Fij_val[i,j];

SOS 11 1311-14 June 2007

Fock Build Code Snippets (2)

• Transposition of distributed matrix (Chapel)
cobegin {

[(i,j) in Ddist] JT(i,j) = J(j,i);[(,j)] (,j) (j,);
[(i,j) in Ddist] KT(i,j) = K(j,i);

}

T iti f di t ib t d t i (F t)• Transposition of distributed matrix (Fortress)
(JT, KT) = (J.t(), K.t())

• Parallel four-fold loop with symmetries (Fortress)Parallel four fold loop with symmetries (Fortress)
for iat<-1#natom,

jat<-1#iat, kat<-1#iat,
lat<-1#(if (kat=iat) then jat else kat

SOS 11 1411-14 June 2007

(() j
end) do

Integral Evaluation Loops (1)Integral Evaluation Loops (1)
• Work pool managed by language runtime (Fortress)

for iat<-1#natom, jat<-1#iat, kat<-1#iat,for iat 1#natom, jat 1#iat, kat 1#iat,
lat<-1#(if (kat=iat) then jat else kat end) do

buildjk_atom4 blockIndices((*many arguments*))
end

• Work pool managed by language runtime (Chapel)
iterator allQuartets() {
f ll i t i 1 t {forall iat in 1..natom {

forall jat in 1..iat {
forall kat in 1..iat {

const lattopconst lattop
= if (kat==iat) then jat else kat;

forall lat in 1..lattop {
yield blockIndices(/*many arguments*/);

SOS 11 1511-14 June 2007

y (/ y g /);
} } } }
forall bI in allQuartets() do buildjk_atom4(bI);

Integral Evaluation Loops (2)g p ()
• User-managed work pool w/ atomic read & increment (X10)

/* Launch a task on each place (~node) */
finish ateach(point [p] :(p [p]

dist.factory.unique(place.places)) {
int myG, L = 0;
/* Get my assignment for the next task */
future<int> F = future (place.FIRST_PLACE)

{read_and_increment_G()};
myG = F.force();
/ //* Begin four-fold loop over iat,jat,kat,lat */

if (L == myG) { /* If this is my task */
/* Request new next task */
F = future (place FIRST PLACE)F = future (place.FIRST_PLACE)

{read_and_increment_G()};
buildjk_atom4(/* many arguments*/);
myG = F force(); /* Get next task */ }

SOS 11 1611-14 June 2007

myG F.force(); / Get next task / }
++L; /* Count my progress through loop */

/* End iat, jat, kat, lat loops */

Integral Evaluation Loops (3)
• User-managed work pool w/ sync variables (Chapel)

// Simple one-element work pool
var task : sync blockIndices; y ;
cobegin {

// Fill work pool with tasks
forall bI in allQuartets() do task = bI;
// On each processor, consume work from pool
begin on (/*all locales (~nodes)*/) {

bI = task; // Get next task from pool
hil (/*b i lid k*/) {while (/*bI is valid task*/) {

// Evaluate block, get next task
} // End while
// Received sentinel no more work to do// Received sentinel, no more work to do
// Put sentinel value back in pool
// Increment count of completed consumers

} // End begin on locales

SOS 11 1711-14 June 2007

} // End begin on locales
} // End cobegin
// Wait for all consumers to complete

MADNESS Example – I

• Adaptive mesh in 1 6+• Adaptive mesh in 1-6+
dimensions

• Very dynamic refinement

0

1

2
• Distribution by subtrees ==

spatial decomposition

S ti l d

2

3

4
• Sequential code very

compactly written using
recursion

5

6

• Initial parallel code using
MPI is about 10x larger

SOS 11 1811-14 June 2007

MADNESS Explicit MPI
Example – II

p
template <typename T> void Function<T>::_refine(OctTreeTPtr& tree) {

if (tree->islocalsubtreeparent() && isremote(tree)) {
FOREACH_CHILD(OctTreeTPtr, tree, bool dorefine;

comm()->Recv(dorefine, tree->rank(), REFINE_TAG);

Cilk-like multithreaded – all of the
HPLS solutions look like this

template <typename T> void Function::_refine (OctTreeTPtr tree) {
FOREACH CHILD(OctTreeTPtr, tree, project(child););

if (dorefine) {
set_active(child); set_active(tree); _project(child);

}
_refine(child););

} else {
TensorT* t = coeff(tree);O C _C (Oct ee t , t ee, _p oject(c d););

TensorT* t = coeff(tree);
TensorT d = filter(*t);
if (d.normf() > truncate_tol(data->thresh,tree->n())) {

unset_coeff(tree);

TensorT t coeff(tree);
if (t) {

TensorT d = filter(*t);
d(data->cdata->s0) = 0.0;
bool dorefine = (d.normf() > truncate_tol(data->thresh,tree->n()));
if (dorefine) unset_coeff(tree);_ ()

FOREACH_CHILD(OctTreeTPtr, tree, spawn _refine(child););
} }

FOREACH_REMOTE_CHILD(OctTreeTPtr, tree,
comm()->Send(dorefine, child->rank(), REFINE_TAG);
set_active(child););

FORIJK(OctTreeTPtr child = tree->child(i,j,k);
if (!child && dorefine) child = tree->insert_local_child(i,j,k);
if (child && islocal(child)) {The complexity of the MPI code mostly arises if (child && islocal(child)) {

if (dorefine) { _project(child); set_active(child); }
_refine(child);

});
} else {

FOREACH_REMOTE_CHILD(OctTreeTPtr, tree,

p y y
from using an SPMD model to maintain a
consistent distributed data structure.

The explicitly distributed code must work on

SOS 11 1911-14 June 2007

comm()->Send(false, child->rank(), REFINE_TAG););
FOREACH_LOCAL_CHILD(OctTreeTPtr, tree, _refine(child););

} } }

The explicitly distributed code must work on
active and inactive nodes – not necessary with
global-view and remote activity creation.

MADNESS Example – IIISS a p e
• X10, 1-D equivalent (ran in parallel, in one place)

void refine(final int n, final int l, final int nmax) {
l ft T (thi 2 0*l)left = new Tree(this,2.0*l);
right =new Tree(this, 2.0*l+1);
final nullable Tree ll = left, rr=right;
if (n < (nmax 1)) {if (n < (nmax-1)) {

async {ll.refine(n+1,2*l,nmax);}
async { rr.refine(n+1,2*l+1,nmax);}

}}
if (n < nmax) data = null;

}

I f ll f th lIssues for all of the languages…
– How to control (or relinquish control) of the initial data

placement?
• One or the other is cumbersome in all of the languages

SOS 11 2011-14 June 2007

One or the other is cumbersome in all of the languages
– How to express dynamic load balancing between localities?

• Only Fortress seems to provide this

Building More Complex Building More Complex
Abstractions

• Object orientation, generic programming, and
programmer-written data distributions

• All three languages also intend to offer an
unprecedented flexibility to extend the language
– Libraries– Libraries
– Compiler optimizations and specializations
– Language syntax (Fortress, X10)

• Extremely powerful tools to support high-level
domain-specific abstractions

SOS 11 2111-14 June 2007

Tensor Contraction Engine (TCE)
• High-level domain-specific language for a

class of problems in quantum
h i t / h i b d t ti fchemistry/physics based on contraction of

large multi-dimensional tensors

• Specialized optimizing compiler

range V = 3000;
range O = 100;

• Specialized optimizing compiler
– Produces F77+GA code, linked to runtime libs

∑= cdeldfjkbeflacikabij DCBASg ;

index a,b,c,d,e,f : V;
index i,j,k,l : O;

mlimit = 100GB;

cefkl
fjfj

procedure P(in A[V,V,O,O], in B[V,V,V,O],
in C[V,V,O,O], in D[V,V,V,O],
out S[V,V,O,O])=

begin
S[a b i j] == sum[A[a c i k] * B[b e f l]

SOS 11 2211-14 June 2007

S[a,b,i,j] == sum[A[a,c,i,k] * B[b,e,f,l]
* C[d,f,j,k] * D[c,d,e,l],

{c,d,e,f,k,l}];
end

TCE Equivalent in HPCS TCE Equivalent in HPCS
Languages

• Object model, distributed array language
capable of expressing complex tensor data
structures
– Reduces need for separate language

• User-written array distributions implement
tensors

Reduces need for separate runtime– Reduces need for separate runtime

• Ability to extend compiler
Reduces need for separate compiler

SOS 11 2311-14 June 2007

– Reduces need for separate compiler

Maybe it’s Not So Far Off?
range V = 3000;
range O = 100;

index a,b,c,d,e,f : V;
index i,j,k,l : O;

Simple TCE input

,j, , ;

mlimit = 100GB;

procedure P(in A[V,V,O,O], in B[V,V,V,O],
in C[V,V,O,O], in D[V,V,V,O],
out S[V,V,O,O])=

begin
S[a,b,i,j] == sum[A[a,c,i,k] * B[b,e,f,l]

* C[d,f,j,k] * D[c,d,e,l],
{c,d,e,f,k,l}];

end

Chapel version
by Brad Chamberlain, Cray
(working code!) end

config const V = 3000,
O = 100;

const DV = 1..V,
DO = 1..O;

(working code!)

DO 1..O;
const DVVOO = [DV, DV, DO, DO],

DVVVO = [DV, DV, DV, DO];
var A, C, S: [DVVOO] real,

B, D: [DVVVO] real;
forall (a, b, i, j) in DVVOO do

SOS 11 2411-14 June 2007

S(a,b,i,j) = + reduce [(c,d,e,f,k,l) in [DV,DV,DV,DV,DO,DO]]
(A(a,c,i,k) * B(b,e,f,l) * C(d,f,j,k) * D(c,d,e,l));

);

But Computational Scientists p
Don’t Like Big Leaps!

• Much work to be done before these languages are g g
ready for users

• Most areas have a few people who would willingly
experiment with early versionsexperiment with early versions

• Must define interoperability mechanisms w/ existing
approaches

L i t (l B b l)– Language interop (a la Babel)
– Programming model interop

• X10 group developing C library of key X10 concepts
– Data model interopData model interop

• Develop transitional approaches
– User education

• HPCS concepts unfamiliar to the majority

SOS 11 2511-14 June 2007

• HPCS concepts unfamiliar to the majority
– Code migration

• For those who want a multistage migration path

Possible Transitional ApproachesPossible Transitional Approaches

• PGAS languages• PGAS languages
– Introduces global-view concepts, integrated parallelism
– Moves users away from thinking about messages

C A f t f t t k f t F t t d d– Co-Array features on fast-track for next Fortran standard

• Bundle-Exchange-Compute (BEC) model (Wen, Sandia)
– User indicates desire to share data, and when data must beUser indicates desire to share data, and when data must be

present
– Library manages data layout, movement, etc.
– Available as library with or without (small) language extensiony () g g
– Shown useful for algorithms with random fine-grained data

sharing (PRAM)

• Others?

SOS 11 2611-14 June 2007

• Others?

• More work needed!

Conclusions

• Current Fortran+MPI+OpenMP approach will not get
us to sustained petaflops sustainably

• Need to make a revolutionary leap in approach• Need to make a revolutionary leap in approach
• HPCS languages offer the kinds of features we need

– Perhaps not the solution, but definitely the right direction!

• Must provide an evolutionary path to join the
revolution
All of this will take time (and $$$) so we had better• All of this will take time (and $$$), so we had better
get started

• Remember the frog!

SOS 11 2711-14 June 2007

