Programming Models
for Sustained Petaflops

David E. Bernholdt, Wael R. Elwasif, Robert
J. Harrison, and Aniruddha G. Shet

Oak Ridge National Laboratory

<D

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Dept. of Energy under contract DE-AC-05-000R22725.
11-14 June 2007 SOS 11

g
z
a
g
g
£
[
g
E

e AL LanoRrATO:

Ok Rimae NaTios

IATIONAL LABORATORY

Today: Approaching a Peak Petaflop

e Hardware characteristics (~100-300 Teraflops peak)

— 10,000-100,000 processors
— 2-4 cores per processor
— Homogeneous processor environment

e Application characteristics
— Scaling up problem size/resolution
— Increasing physical fidelity/model complexity
— Early explorations of coupled simulation

e Dominant programming model
— Sequential language (Fortran)
— 2-sided messaging library (MPI)
— threads (OpenMP)
— Age: ~30 years

11-14 June 2007 SOS 11

ornl

Ak Rince NATIoNAL LABGRATORY

Tomorrow: Sustained Petaflops
and Beyond

 Hardware characteristics (10-100 petaflops peak)
— 100,000-1,000,000 processors
— 100-1,000 cores per processor

— Heterogeneous processor environment may be common
« Example: LANL Roadrunner: Opteron, PowerPC, Cell
» Also GP-GPUs, integrated GPUs, FPGAs, etc.

» Application characteristics
— Scaling up problem size/resolution leveling off
— Increasing physical fidelity/model complexity
— Serious coupled simulation
— Serious algorithmic scaling challenges
— Increase in adaptive representations, irregular computations
— Increase in community-wide code sharing

e Dominant programming model
— 2?7

11-14 June 2007 SOS 11 3

Fortran+MPI+OpenMP Forever?

* | hope not!
— The “assembly language” of parallel programming

e Pushes too much complexity onto the programmer
— Explicit/local management of complex distributed data structures

— Coordination among O(10%-108) communication endpoints, more
threads

 Parallelism bolted on to sequential language makes
program expression, comprehension, tuning, etc. harder

e Fortran is still relatively low level
— EXpresses basic computations, but not domain abstractions
— F2003 better, but not widely used (implemented?) yet

* MPI emphasizes the mechanics of data movement,
obscures scientific problem and abstractions

* OpenMP is mostly about loop-level parallelism, but much
more IS needed

11-14 June 2007 SOS 11 4

11-14 June 2007

The Nature of Scientific
Programming has Changed

It used to be that straightforward FORmula
TRANSslation was sufficient

Now, it involves the manipulation of complex,
hierarchical abstractions in environments requiring
huge levels of concurrency

The change has been incremental, and the tools are
still just doing formula translation
— Boiled frog analogy

Programming models must make a leap!

SOS 11

g
]
g
z
:
£
g
4
E

11-14 June 2007

What's the Alternative?

Higher-level core language
Integrated concurrency
Global view of data

PGAS (Partitioned Global Address Space)?
— Co-Array Fortran (CAF)

— Unified Parallel C (UPC)

— Titanium

HPCS (High Productivity Computing Systems)
— Chapel (Cray)

— Fortress (Sun)

— X10 (IBM)

Domain-specific languages
— What to build upon?

SOS 11

g
]
g
z
:
£
:
4
E

— Possibly useful in a transitional sense (more later)

11-14 June 2007

PGAS is Not Enough

Simplest possible extension to {Fortran,C,Java} to
provide basic parallelism

Base languages are not high enough level

Each language has a variety of problems and
limitations

— CAF doesn't really provide a global view of data

— UPC only understands distributed arrays in 1d, hard to
optimize
— Titanium is a dialect of Java

A step In a positive direction
— But not a large enough step

SOS 11

2
z
g
E
;‘.
3
2
£
g
g
E

HPCS Languages: Core Features

* Rich array data types
e Strongly typed

e Object oriented model
— Distinction between reference and value types

e Generic programming
e Strongly library oriented

e Extensible language model (more later)

11-14 June 2007 SOS 11 8

Productivity Features

Index sets/regions for arrays, etc.
— “Array language” (Chapel, X10)

Safe(r) and more powerful language constructs
— Atomic sections vs locks

— Sync variables and futures
— Clocks (X10)

Type inference

Leverage IDE environments

Units and dimensions (Fortress)

Component management, testing, contracts (Fortress)

Math/science-based presentation (Fortress)

11-14 June 2007 SOS 11

g
5
g
g
;‘.
]
B
£
g
g
¢

Concurrency
e Not SPMD!
— Initially single thread of control, parallelism through language
constructs

e True global view of memory, one-sided access model
o Support for both task and data parallelism

o “Threads” grouped by “memory locality”
— Explicitly two level (Chapel, X10), or hierarchical (Fortress)

* Rich distributed array capability
— Programmer-provided distribution details

o Parallel loops
« “Generator” concept used widely for loops, distributions

Futures
— Local and remote

11-14 June 2007 SOS 11

g
5
g
g
;‘.
]
B
£
g
g
¢

10

g
g
g
;‘.
]
B
£
g
g
¢

Fock Matrix Construction
(Quantum Chemistry)

Fuvé Dy { 2 (nv|Ao) - (uA|vo) }
* Indices u, v, A, o represent basis functions (N)

 Fis Fock matrix, D is density matrix
— Held in core

* (uv|io) are “two-electron repulsion integrals”
— Due to permutational symmetries, only O(N4/8) unique
— Can be evaluated on the fly

* Inintegral-driven algorithm, each integral contracts with six
different D elements, contributing to six different F
elements

e Challenge: irregularity
— Integrals evaluated in blocks of varying size (1-10,000+ integrals)
— Average 500 FLOPs per integral, but wide variation

11-14 June 2007 SOS 11 11

e Ornl

Ok Rimae NaTionaL LAsoRATORY

Scalable Fock Build Algorithm

Hierarchically blocked, dynamically load balanced, integral-driven

|
task-local working blocks N
D, F
global-view | =
distributed
arrays
" |

work pool
Integrals (uv|Ao) of integral
blocks

PO P1 P2 P3 P4

» |dea first implemented by Furlani and King (1995) using MPI
— Efficient implementation (up to 16 CPUs) required heroic effort
— Privately, approach not considered viable in general

* Inspired development of Global Array Toolkit (PNNL)
— Library-based implementation of PGAS concepts

* NWChem implementation (1995) using GA scales to 1000s of CPUs
— Simple to code

11-14 June 2007 SOS 11 12

g
E
g
z
:
g
:
g
2

Fock Build Code Snippets (1)

« Defining a distributed array (X10)
final region Dregion = [1:n, 1:n];
final dist Ddist = dist.factory.block(Dregion);
final double [.] F = new double [Ddist];

« Local working copy of D block (Chapel)
const 1j points = [1lo..1ht, jlo._jhi];
const Dij = D(ij_points);

e Atomic update of global F from working block (X10)
final double value [.] Fij_val = Fij.toValueArray(Q);

ateach(point [1,jJ] : Ddist | [1lo:1ht, jlo:jhi])
atomic F[1,j3] += Fij_val[1,]];

11-14 June 2007 SOS 11 13

g
]
g
z
:
£
:
4
E

Fock Build Code Snippets (2)

o Transposition of distributed matrix (Chapel)
cobegin {
[(i,]) in Ddist] JT(i,j)
[(i,]) in Ddist] KT(i,j)
+

e Transposition of distributed matrix (Fortress)
(JT, KT) = (J.tO, K.t())

o Parallel four-fold loop with symmetries (Fortress)
for 1at<-1#natom,
Jat<-1#i1at, kat<-1l#iat,
lat<-1#(1f (kat=1at) then jat else kat
end) do

JJ.1);
KA.1);

11-14 June 2007 SOS 11 14

g
5
z
Ed
g
g
g
£
I
3
g
E

Integral Evaluation Loops (1)

« Work pool managed by language runtime (Fortress)
for n1at<-l1l#natom, jJat<-1#i1at, kat<-1#iat,
lat<-1#(1f (kat=1at) then jat else kat end) do
buildjk _atom4 blockIndices((*many arguments®*))
end

 Work pool managed by language runtime (Chapel)
iterator allQuartets() {
forall 1at 1n 1._.natom {
forall jat in 1..1at {
forall kat 1n 1..1at {

const lattop
= 1T (kat==1at) then jat else kat;

forall lat in 1..lattop {
yield blockIndices(/*many arguments*/);

F N
forall bl 1n allQuartets() do buildjk atom4(bl);

11-14 June 2007 SOS 11 15

ornl

Ak Rince NATIoNAL LABGRATORY

Integral Evaluation Loops (2)

e User-managed work pool w/ atomic read & increment (X10)
/* Launch a task on each place (~node) */

finish ateach(point [p]
dist.factory.unique(place.places)) {
int myG, L = O;
/* Get my assignment for the next task */
future<int> F = future (place.FIRST _PLACE)
{read _and_increment G(Q};
myG = F.force();
/* Begin four-fold loop over 1iat,jat,kat,lat */
iIfT (L == myG) { /7* IT this 1s my task */
/* Request new next task */
F = future (place.FIRST_PLACE)
{read _and_increment G(O};
burnldjk _atom4(/* many arguments*/);
myG = F.force(); /* Get next task */ }
++L; /* Count my progress through loop */
/* End 1at, jat, kat, lat loops */

11-14 June 2007 SOS 11 16

ornl

Ak Rince NATIoNAL LABGRATORY

Integral Evaluation Loops (3)

e User-managed work pool w/ sync variables (Chapel)
// Simple one-element work pool

var task : sync blocklIndices;
cobegin {
// Fill work pool with tasks
forall bl 1n allQuartets() do task = Dbl;
// On each processor, consume work from pool
begin on (/*all locales (~nodes)*/) {
bl = task; // Get next task from pool
while (/7*bl 1s valid task*/) {
// Evaluate block, get next task
} // End while
// Received sentinel, no more work to do
// Put sentinel value back 1n pool
// Increment count of completed consumers
} /7 End begin on locales
} // End cobegin
// Wait for all consumers to complete

11-14 June 2007 SOS 11 17

D O &~ W DN +Hr O

11-14 June 2007

g
]
g
z
:
£
:
4
E

MADNESS Example - |

SOS 11

Adaptive mesh in 1-6+
dimensions

Very dynamic refinement

Distribution by subtrees ==
spatial decomposition

Seqguential code very
compactly written using
recursion

Initial parallel code using
MPI is about 10x larger

18

ornl

Ok Rimae NaTionaL LAsoRATORY

MADNESS Explicit MPI
Exam p I e - I I template <typename T> void Function<T>::_refine(OctTreeTPtr& tree) {

if (tree->islocalsubtreeparent() && isremote(tree)) {
FOREACH_CHILD(OctTreeTPtr, tree, bool dorefine;
comm()->Recv(dorefine, tree->rank(), REFINE_TAG);

1 1 - if (dorefine) {
CI I k-l I ke m u |t|th read ed - a” Of the set_active(child); set_active(tree); _project(child);
HPLS solutions look like this)
. . . _refine(child););
template <typename T> void Function::_refine (OctTreeTPtr tree) { Jelse {
FOREACH_CHILD(OctTreeTPtr, tree, _project(child);); TensorT* t = coeff(tree);
TensorT* t = coeff(tree); it (0) {
e e\ TensorT d = filter(*t);
TensorT d = filter(*t); d(data->cdata->s0) = 0.0;
if (d.normf() > truncate_tol(data->thresh,tree->n())) { bool dorefine = (d.normf() > truncate_tol(data->thresh,tree->n()));
un set_coeff(tree); if (dorefine) unset_coeff(tree);
, , FOREACH_REMOTE_CHILD(OctTreeTPtr, tree,
FOREACH_CHILD(OctTreeTPtr, tree, spawn _refine(child);); comm()->Send(dorefine, child->rank(), REFINE_TAG);
} } set_active(child););
FORIJK(OctTreeTPtr child = tree->child(i,j,k);
. . if (Ichild && dorefine) child = tree->insert_local child(i,j,k);
The complexity of the MPI code mostly arises ifﬁchi,d 88 ismcm(c:md»{ HoceLeniat
from US|ng an SPMD model to malntaln a if (dorefine) { _project(child); set_active(child); }
. . . _refine(child);
consistent distributed data structure. :
}else {
o) . FOREACH_REMOTE_CHILD(OctTreeTPtr, tree,
The explicitly distributed code must work on comm()->Send(false, child->rank(), REFINE_TAG),):
aCtlve and |naCt|Ve nOdeS _ nOt necessary W|th FOREACH_LOCAL_CHILD(OctTreeTPtr, tree, _refine(child););
11}

global-view and remote activity creation.

11-14 June 2007 SOS 11 19

g
5
z
a
g
g
£
[
g
E

e AL LanoRrATO:

MADNESS Example - |l

o X10, 1-D equivalent (ran in parallel, in one place)
void refine(final int n, final int |, final int nmax) {
left = new Tree(this,2.0*]);
right =new Tree(this, 2.0*+1);
final nullable Tree Il = left, rr=right;
if (n < (nmax-1)) {
async {ll.refine(n+1,2*l,nmax);}
async { rr.refine(n+1,2*+1,nmax);}
}

if (n < nmax) data = null;

}

Issues for all of the languages...

— How to control (or relinquish control) of the initial data
placement?
* One or the other is cumbersome in all of the languages

— How to express dynamic load balancing between localities?
* Only Fortress seems to provide this

11-14 June 2007 SOS 11 20

Building More Complex
Abstractions

e ODbject orientation, generic programming, and
programmer-written data distributions

« All three languages also intend to offer an
unprecedented flexibility to extend the language
— Libraries
— Compiler optimizations and specializations
— Language syntax (Fortress, X10)

o Extremely powerful tools to support high-level
domain-specific abstractions

11-14 June 2007 SOS 11

g
]
g
z
:
£
:
4
E

21

ornl

Ak Rince NATIoNAL LABGRATORY

Tensor Contraction Engine (TCE)

« High-level domain-specific language for a
class of problems in quantum

. : . Tensor Expressions
chemistry/physics based on contraction of | |
large multi-dimensional tensors TCE Language

Parser
» Specialized optimizing compiler e |
:)) i Simple Expression Tree |
— Produces F77+GA code, linked to runtime libs 5 Optimizations -
range V = 3000; « ~wr © ~ ~ | 2 TTTIIIToTTTTTT
range O = 100; ablj ZAamk BbefICdfjk Dcdel
cefkl : “ / Loop Fuser ‘
index a,b,c.,d,e,f : V; ‘S”T'P'E Code]
fndex Lkl s 0 Generator Abstract Syntax Tree
mlimit = 100GB; Generator
procedure P(in A[V,V,0,0], in B[V,V,V,0O], AbttSJLtT ------
in C[V,V,0,0], in D[V,V,V,0], stract Syntax ree
out S[V,V,0,0]= ; Optimizations .
begin T I ---------------
S[a,b,1,jJ] == sum[A[a,c,i,k] * B[b,e,T,I] Code G {
* C[d,f,j,k] * D[c.,d,e,I], il / ode Generator
end te.d.e.T.k. 131 Generated Code

11-14 June 2007 SOS 11 22

[CE Equivalent in HPCS
Languages

* Object model, distributed array language
capable of expressing complex tensor data

structures
— Reduces need for separate language

e User-written array distributions implement

tensors
— Reduces need for separate runtime

 Ability to extend compiler
— Reduces need for separate compiler

11-14 June 2007 SOS 11

g
g
g
;‘.
]
]
£
g
g
¢

23

Chapel version
by Brad Chamberlain, Cray
(working code!)

e AL LanoRrATO:

Maybe 1t’s Not So Far Off?

Simple TCE input

range V = 3000;
range O = 100;
index a,b,

c,d,e,f - V;
index i,j,k,I - O;

mlimit = 100GB;

procedure P(in A[V,V,0,0], in B[V,V,V,0],
in C[V,Vv,0,0], in D[V,V,V,0],
out S[V,V,0,0]D=

begin

S[a,b,i,j]1 == sum[Ala,c,i,k] * B[b,e,f,I]

* C[d,f,j.k] * D[c.d,e,I],

{c.d,e,f,k,1}];
end

config const V

const DVVOO

forall (a, b,

)

3000,
100;

0

const DV = 1..V,

DO = 1..0;
[DV, Dv, DO,

[DV, DV, DV,

DO],
DOJ;

DVVVO

var A, C, S: [DvVOO] real,

B, D: [DVVVO] real;

i, j) in DVVOO do

S(a,b,1,jJ) = + reduce [(c,d,e,F,k,1) in [DV,
(A(a,c,i,k) * B(b,e,f, 1) *

DV,DV,DV,D0,D0]]
C{,f,j,k) * D(c,d,e,));

11-14 June 2007

SOS 11

24

11-14 June 2007

oml

Ok Rmae NaTioNaL LABORATORY

But Computational Scientists
Don’t Like Big Leaps!

Much work to be done before these languages are
ready for users

Most areas have a few people who would willingly
experiment with early versions

Must define interoperability mechanisms w/ existing
approaches
— Language interop (a la Babel)

— Programming model interop
o X10 group developing C library of key X10 concepts

— Data model interop

Develop transitional approaches

— User education
« HPCS concepts unfamiliar to the majority
— Code migration
» For those who want a multistage migration path

SOS 11 25

2
£
g
E
;‘.
3
o
£
g
g
E

Possible Transitional Approaches

« PGAS languages
— Introduces global-view concepts, integrated parallelism
— Moves users away from thinking about messages
— Co-Array features on fast-track for next Fortran standard

 Bundle-Exchange-Compute (BEC) model (Wen, Sandia)

— User indicates desire to share data, and when data must be
present

— Library manages data layout, movement, etc.
— Available as library with or without (small) language extension

— Shown useful for algorithms with random fine-grained data
sharing (PRAM)

e Others?
e More work needed!

11-14 June 2007 SOS 11

26

11-14 June 2007

Conclusions

Current Fortran+MPI+OpenMP approach will not get
us to sustained petaflops sustainably

Need to make a revolutionary leap in approach

HPCS languages offer the kinds of features we need
— Perhaps not the solution, but definitely the right direction!

Must provide an evolutionary path to join the
revolution

All of this will take time (and), SO we had better
get started

Remember the frog!

SOS 11

2
5
g
g
;‘.
]
]
£
g
g
¢

27

