A variational problem involving a polyconvex integrand

Wilfrid Gangbo Georgia Tech

Abstract

Let $f \in C^1(\mathbb{R}^{d \times d})$ and $h \in C^2(0, \infty)$ be strictly convex functions. Define on $\mathbb{R}^{d \times d}$ the polyconvex function $W(\xi) = f(\xi) + h(\det \xi)$, assume that $\lim_{t \to 0^+} h(t) = \lim_{t \to \infty} h(t)/t = \infty$ and that $\mathbf{F} \in L^{\infty}(\Omega, \mathbb{R}^d)$ is nondegenerate. For S subspace of $L^{\infty}(\Omega, \mathbb{R}^{d \times d})$, we consider the functional

$$\mathbf{u} \to I_{\mathcal{S}}(\mathbf{u}) := \int_{\Omega} \Big(f(\nabla_{\mathcal{S}} \mathbf{u}) + h(\det^* \nabla \mathbf{u}) + \mathbf{u} \cdot \mathbf{F} \Big) dx$$

where $\nabla_{\mathcal{S}} \mathbf{u}$ is the *f*-projection of $\nabla \mathbf{u}$. We consider appropriately chosen finite dimensional spaces \mathcal{S} such that $\nabla_{\mathcal{S}} \mathbf{u}$ converges to $\nabla \mathbf{u}$. Despite the loss of compactness of the sublevel sets of $I_{\mathcal{S}}$ and the lack of any knowledge of convexity of $I_{\mathcal{S}}$ for any metric, we show that $I_{\mathcal{S}}$ admits a unique minimizer over the set of \mathbf{u} such that, in some weak sense, $\mathbf{u}(\Omega) = \Lambda$. We also uniquely characterize the minimizers by their Euler-Lagrange equations. This work is a contribution to the study of the system of PDEs $\partial_t \mathbf{u} + \operatorname{div}(DW(\nabla \mathbf{u})) = 0$ which remains an outstanding open problem.

This is joint work with R. Awi.