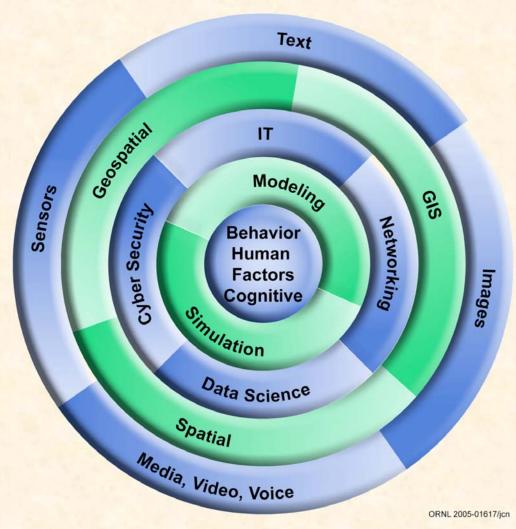


Knowledge Discovery

Brian Worley, Director Computational Sciences and Engineering Division

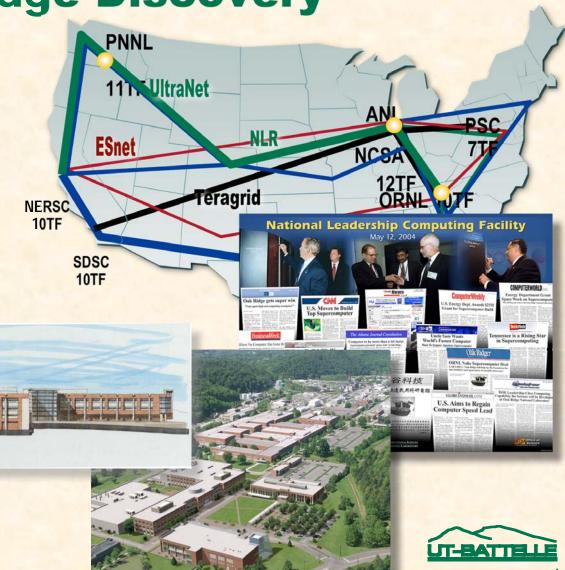
Scientific and Technological Motivation for Knowledge Discovery

Media type	Tbyte
Newsletters (40,000 titles)	ş
CD-ROMs (850 titles)	1
Scholarly journals(37,609 titles)	6
Books (950,000 titles)	39
DVD videos (4,000 titles)	44
Mass-market periodicals (80,000	52
Audio CDs (33,443 titles)	58
Newspapers (25,276 titles)	138
Searchable Web	167
Instant messaging	274
Zip disks (1.4 million)	350
Floppy disks (55 million)	800
Office documents (10.75 billion pages)	1,397
Audio minidisks (10.5 million)	1,700


Media type	Tbytes
Flash memory (43 million)	2,200
X-rays (2 billion)	20,000
Motion pictures (10,342)	25,000
Deep Web	91,850
Audio tapes [analog] (128.8 million)	128,800
Digital tapes (5 million)	250,000
Photographs (75 billion)	375,000
E-mails (originals)	440,606
Digital video (115 million)	1,265,000
Video tape (VHS) and camcorder (220 million)	1,340,000
Hard disk drives (44 million)	1,986,000

The searchable Internet (purple) contains only a fraction of the information stored on digital media

Source: MIT Technology Review, 2005

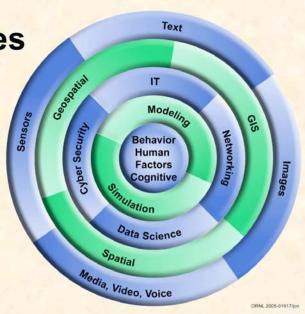

CSED Scientific Thrusts Revolve around Knowledge Discovery from Diverse, Dynamic, Large Datasets

ORNL Commitment to Science for Knowledge Discovery

- Entire Research Division
 Devoted to Knowledge
 Discovery (CSED, 150 staff)
- Physical Resources: High Performance Computing, Networking, MRF, JICS
- LDRD Initiative in Knowledge Management

Questions to Data

- How to ask relevant questions
- What data will answer the question
- What data can be obtained at what cost
- How to infer knowledge from incomplete data
- What is the uncertainty


Data to Questions

- What useful data do we have or can obtain
- What trends or patterns exist in the data
- What is the class of questions that can be answered from this data
- What additional data would be most useful

CSED Scientific Thrusts Revolve around Knowledge Discovery from Diverse, Dynamic, Large Datasets

- Data Sources: data integrity, security, and policy
- Data Assimilation: open and/or covert
- Geospatial and temporal attribution
- Data management; networking issues
- Modeling and analysis
- Interpretation
- Data Dissemination
- Additional decision support

CSED Core Research Areas

Information Systems

- Systems architecture and design
- Large-scale data management
- Real-time data assimilation
- Real-time data dissemination

Information Analysis

- Agent-based methods
- Text and image analysis
- Sensor data science
- Data and information fusion
- Quantum algorithms

Geospatial Sciences

- Population and social dynamics
- Feature and process extraction
- High-performance visualization
- Transportation modeling

Information Security

- Multi-level access
- Authentication and Trust
- Information Assurance
- Quantum Information Systems

Decision Sciences

- Man/Machine Interfaces
- Time-critical mission support
- Behavioral Sciences
- Cognitive Inference

Modeling and Simulation

- Discrete event simulations
- Predictive simulations
- Inverse problems simulations
- System integration simulations
- Complex nonlinear systems

Distributed Data Management:

Information Technology Infrastructure Design and Development

Thrusts:

- Scientific Data Archives for DOE and NASA (CDIAC, ARM, DAAC)
- Scientific Data Archive for USGS (NBII)
- Universal Communication and Investigation Consortium (UCIC)
- Protective Security Analysis Center (PSAC)

Mercury Provides a Portal to Distributed Data

Developed for NASA by ORNL

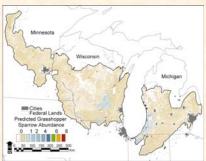
NASA Software Product of the Year - 2001 Runner Up

"For the creative development of a technological contribution which has been determined to be of significant value in the advancement of the space and aeronautical activities of NASA, and is entitled: Mercury - A Web Based Metadata Search and Data Retrieval System"

What is the NBII?

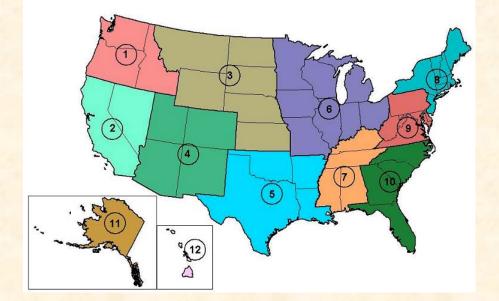
- NBII stands for the National Biological Information Infrastructure
- A broad, distributed, collaborative program to provide access to data and information to biological resources.
- NBII originates from the United States Geological Survey (USGS), a part of the U. S. Department of the Interior

The NBII Web site is



NBII Goals and Objectives

- The NBII is a broad, collaborative program to provide increased access to data and information on the nation's biological resources.
- The NBII links diverse, high-quality biological databases, information products, and analytical tools maintained by NBII partners and other contributors in government agencies, academic institutions, non-government organizations, and private industry.
- NBII partners and collaborators also work on new standards, tools, and technologies that make it easier to find, integrate, and apply biological resources information.
- Resource managers, scientists, educators, and the general public use the NBII to answer a wide range of questions related to the management, use, or conservation of this nation's biological resources.



NBII Regional Nodes

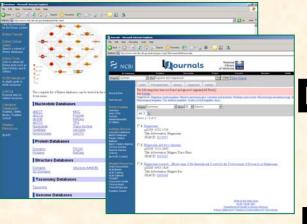
- California
- Central Southwest/Gulf Coast
- Great Basin
- Mid Atlantic
- Mountain Prairie
- Northeast
- Pacific Basin
- Pacific Northwest
- Southern Appalachian

What Does ORNL do for NBII?

- Provides the NBII Metadata Clearinghouse
- UDDI server
- Specimen web service
- Thesauri web services
- Gazetteer web services
- Leverages ORNL OGC membership

 ORNL is an OGC Technical Committee Member

Knowledge Discovery from Text: A Success Story


Biomedical Journals

Low Cross-reference within disciplines

PubMed Archives

Online Archive of Medical Journals

Question:

What causes migraine headaches?

Text Analysis

and Mining

et al... 1989

Ramadan Confirmed by Experts

New Hypothesis:

Magnesium Deficiency

Extracted evidence from titles of articles in the biomedical literature

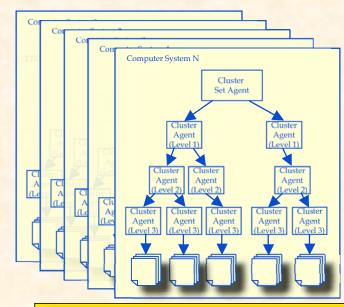
- · stress is associated with migraines
- · stress can lead to loss of magnesium
- calcium channel blockers prevent some migraines
- · magnesium is a natural calcium channel blocker
- · spreading cortical depression (SCD) is implicated in some migraines
- high leveles of magnesium inhibit SCD
- · migraine patients have high platelet aggregability
- magnesium can suppress platelet aggregability

(New medical knowledge)

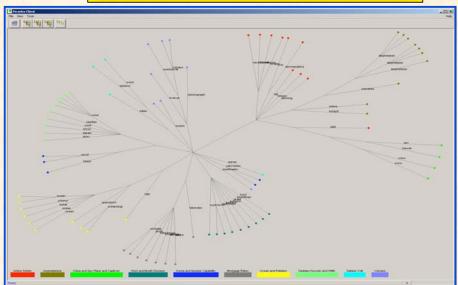
leads to Migraine

Swanson, 1987 Swanson et al., 1991, 1994, 1997 Example from Hearst, 1999

Hypothesis Generation: "Chains of causal implication within the medical literature can lead to hypotheses for causes of rare diseases"

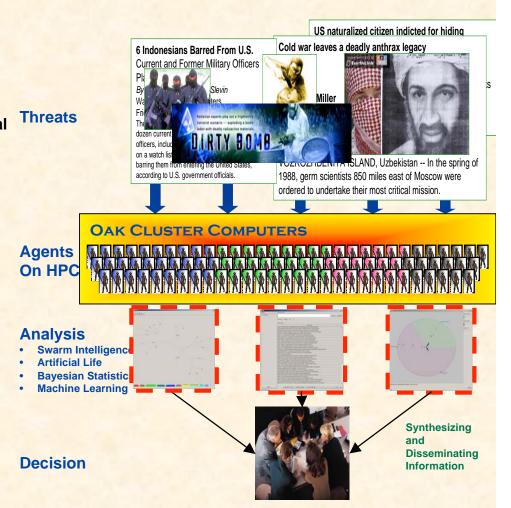

Agent-Based Dynamic Text Analysis

Thrusts:


- Piranha Analyzing high volume, dynamic text data
- VIPAR DHS Advanced Scientific Computing
- Agent-based Swarming Algorithms

Patents

- J. Reed and T. Potok "An Agent-based Method for Distributed Clustering of Textual Information" submitted (2004)
- T. Potok, J. Reed, M. Elmore, J. Treadwell, N. Samatova, "Method for Gathering and Summarizing Internet Information", application number 20030120639 (2003).



Agent-Based Threat Detection

- Projects:
 - DHS, Military, IC Customers
- Recent Publications:
 - M. Elmore, J. Reed, T. Potok, "Real-time Document Cluster Analysis for Dynamic Data Sets," IPSI-Amalfi, 2005
 - X.Cui, T.Potok, "Tracking non-Stationary Optimal Solution by Particle Swarm Optimizer," ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD2005)
 - T. E. Potok, L. Phillips, R. Pollock, and A. Loebl, "Suitability of Agent Technology for Military Command and Control in the Future Combat System Environment," Proceedings of the 8th International Command and Control Research and Technology Symposium, 2003
- Resources: Red and White Oak Clusters
 - 4 Dell 2850s each with
 - 3.2 GHz Dual Processor
 - 2 GB Ram
 - 438 GB Disk
 - 131 Dell 1850s each with
 - 3.2 GHz Dual Processor
 - 2 GB Ram
 - 73 GB Disk
 - Total
 - 1.7 TFLOPS
 - 270 GB Memory
 - 11.3 TB Disk

Video and Image Analysis, Visualization

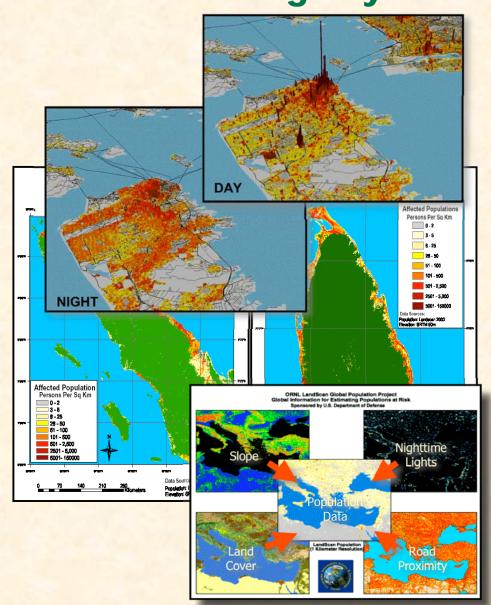
Thrusts:

- Oak Ridge Isochronous Observation Network (ORION)
 - Port of San Diego
 - Port of Charleston
- Image to Intelligence Archive (I2IA)

ORION

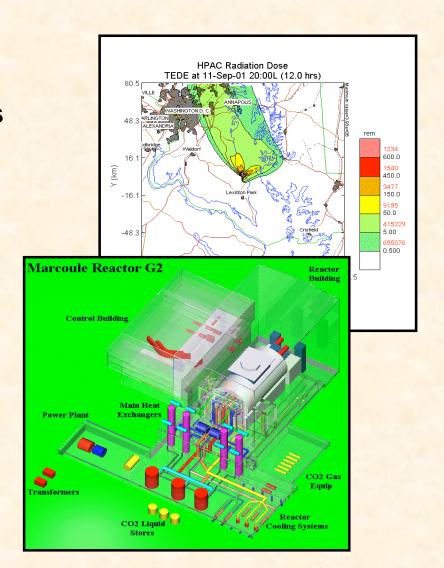
Software Agents Analyze Massive Video, Image Data

Image to Intelligence Archive (I2IA)



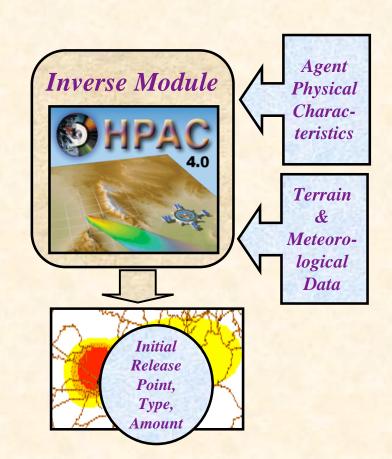
Parallel Discrete Event Simulations: Event-based and Formal Methods for Large Systems

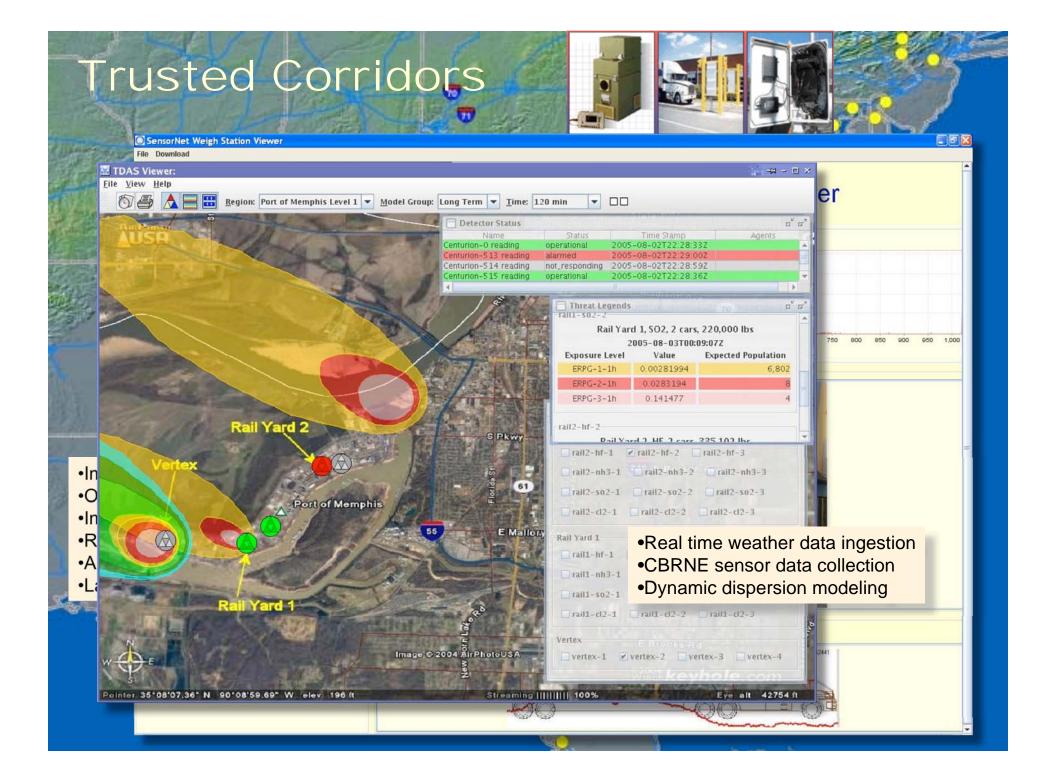
Thrusts:


- LandScan Global and USA Population Modeling
- Spatial-Temporal Social Dynamics
- Intelligent Consequence
 Management
- Critical Infrastructure Protection Modeling
- Multi-modal Transportation Modeling

Predictive Simulations: Multi-disciplined Physics-Based Computations

Thrusts:


- Prediction of Atmospheric transport of hazardous materials
- River and estuary water transport
- Facility Vulnerability



Inverse Problems Simulations: Determining Potential Causes of Known Effects

Thrusts:

- Prediction of source of observed waterborne hazards
- Prediction of source of observed atmospheric hazards

