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Supernova modeling marked the genesis of
computational astrophysics
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ABSTRACT

We regard the release of gravitational energy attending a dynamic change in configuration to be the
primary energy source in supernovae explosions, Although we were initially inspired by and agree in
detail with the mechanism for initiating gravitational mstability proposed by Burbidge, Burbidge,
Fowler, and Hoyle, we find that the dynamical implosion is so violent that an energy many times greater
than the available thermonuclear energy is released from the star's core and transferred to the star's
mantle in a supernova explosion, The energy released corresponds to the change in gravitational potential
of the unstable imploding core; the transfer of energy takes place by the emission and deposition of
neuktrinos,

Colgate & White 1966, ApJ,143, 626

“The reason this paper is cited so many times is because it
started the new endeavor of hydrodynamic stellar modeling. It is
ironic that this work started because of an argument with Soviet
scientists during the negotiations for the Cessation of Nuclear
Weapons Tests in Geneva in 1959. It was claimed by me that the
radiation emissions from a supernova might trigger the then
proposed detection net for high altitude nuclear explosions that
the Soviets were proposing. This objection of a possible false
triggering of the system was brushed aside by the Soviet
Ambassador Tsarpkin because, ‘Who knows what a supernova
would look like?'” - S. Colgate The Scientist 12/1/1980

Two guys in the ORNL CAVE
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Supernova Types
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Computing Supernova Evolution

Infinite Number of Points Finite Number of Points

J(r’pF) % (r2i+1pi+1Fi+1 = rzipiFi) r;
on Ami, )
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Different physical mechanisms require different
collections of algorithmic techniques

Core-collapse Thermonuclear
Compressible Finite-volume (PPM), Compressible Finite-volume (PPM),
hydrodynamics finite-difference schemes hydrodynamics finite-difference schemes

Elliptic solvers - multigrid,

multipole; GR - hyperbolic | Need precise gravity
hydrodynamics and field calculations (buoyancy)
equations

Elliptic solvers - multigrid,

Strong gravity multipole

Linear system solution
(sparse, non-symmetric)

Front-tracking schemes,

Neutrino transport
level sets

Flame tracking

Requires fast mathematical
primitives and carefully Nuclear burning
constructed data structures

Nuclear matter
equation of state

Linear system solution
(sparse, non-symmetric)

Requires large local memories for adequate phase Requires large global memory to span vastly
space resolution in transport calculations disparate spatial scales (+LES)
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Supernova explosions

Why Are Supernovae ol
Interesting? PR Hot hydrogen gas

Stellar winds

Shells and
~ chimneys

Diffuse

Nucleosynthesis atomic
clouds

Cold molecular
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th|palul | | Star formation
Core collapse supernovae are the Core collapse supernovae trigger
dominant source of the elements o star formation.

between oxygen and iron. Science

THE Thermonuclear

Thermonuclear supernovae are Acfpemanne -~ supernovae have been

responsible for essentially all of the
iron in your blood.

used as ‘standard
candles’ to determine
the size, shape, and
overall nature of the
Universe
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*The Final Years

1971: Neon Ignition

1983: Oxygen Ignition

1987: Silicon Ignition (13 Feb)
. 1987: Supernova (23 Feb)
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Shock Stagnation and Reheating
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Spherically-symmetric simulations with
AGILE-BOLTZTRAN

AGILE-BOLTZTRAN

Implicit, adaptive Lagrangian
hydrodynamics coupled to fully-implicit
Boltzmann neutrino transport solver.
Fully generally relativistic, both in hydro
and transport.

 Microphysics to be added

* “New” physics (e.g. neutrino
mixing) to be explored

» Optimizations to be undertaken
* Analysis tools to be built

« Software interfaces to be built
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When, where, and how iIs spherical symmetry is broken?

All images: NASA
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SASI

Standing pressure waves

within the cavity of a
collapse
supernovae, the SASI will

operate in conjunction

becomes significantly

2]
L®]
O
e
(b
o

spherical accretion shock
In core

are amplified with each
oscillation. The shock
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neutrino-driven convection.
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Blondin, Mezzacappa, & DeMarino (2003)

Blondin & Mezzacappa (2005)
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Development of the SASI

Visualization: Kwan-Liu Ma, UCD

Can the SASI help explain pulsar spin periods?
Neutron star natal kicks? Other observables?
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Conclusions

* Blowing up stars Is just plain fun...

e ..and also happens to involve most of
modern physics...

e ...and stretches the capabilities of even
the world’s largest computational
resources.
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The Need for Accurate Neutrino Transport

PNS (Diffusion)

Neutrino Propagation

Shock
Gain Radius

Neutrinospheres

The net heating rate in the gain region
depends sensitively on the neutrino
spectra and angular distribution.
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