Advanced Scientific Computing Research

Overview of CS Research at ORNL

Al Geist

Computer Science and Mathematics Division Oak Ridge National Laboratory

December 12, 2005 RAMS Workshop Oak Ridge, TN

ORNL Enabling Technology Software

Significant impact and world-wide influence on Cluster computing and the Science enabled by it.

- Track record of developing very popular software.
 - PVM 400,000 OSCAR - 100,000 enote - 8000
- Influencing Standards MPI, BLAS, LAPACK
- Enabling Science

OSCAR and Enote are widely used in education, research, and industry.

Goal is to accelerate the process of Scientific Discovery

Harness Workbench Unified Programming Environment

Harness Workbench

Plugins optimized for specific HPC environment

Developed a Simulator for Peta-Scale System

Scalable Systems Software for Terascale Computer Centers

www.scidac.org/ScalableSystems

Problem

- Computer centers use incompatible, ad hoc set of systems tools
- Present tools are not designed to scale to multi-Teraflop systems

Solution

- Collectively (with industry) define standard interfaces between systems components for interoperability – XML, WS
- Create scalable, standardized management tools for efficiently running our large computing centers

Impact

- Reduced facility mgmt costs.
- More effective use of machines by scientific applications.

Scalable Systems Software Suite

Management of Scientific Data Sets Drives Algorithmic Breakthroughs

Scientific Data Management

Common Component Architecture (CCA)

CCA is a multi-lab effort to provide a standard for interoperability of high performance components developed by many different groups in different languages or frameworks.

- Efficient coupling of SPMD components running on SMP nodes.
- Coupling of parallel components (collective ports)

CCA Research at ORNL:

- Collective Ports spec. and NxM
- Data Distribution in parallel components
- Computational Steering components
- Dynamic environments

SNS Facility Software Designed to enable much more than just data collection

DOE Genomes to Life Program

Understand how genes, proteins, and cells work in intricate networks to form dynamic living systems exquisitely responsive to their environment.

Start with simple life form – single cell organism

- Discover how microbial genes, proteins and cells work together
- Use supercomputers to analyze data, predict, model, and simulate how protein machines interact through complex interconnected pathways

Molecular Machines Fill Cells Many interlinked proteins form interacting machines

From <u>The Machinery of Life</u>, David S. Goodsell, Springer-Verlag, New York, 1993.

Regulatory Networks Control the Machines Gene regulation controls what genes are expressed

Proteome changes over time and due to environmental conditions

www.genomes-to-life.org

New Computational Biology Tools

- SVMMER protein functional characterization web portal http://www.csm.ornl.gov/comp_biology/projects/SVMMER
- ROBETTA protein structure prediction web portal http://www.lanl.bakerlab.org/

.

PAT Pattern analysis tool for statistical comparative analysis of protein-protein interfaces, surface patches and binding sites web portal

http://www.csm.ornl.gov/comp_biology/projects/PAT/

- DEB data entry, sharing, and browsing, easy interface for entering, viewing, and sharing microarray data http://sdm.lbl.gov/~opm7/sdmdev/www/
- Proteomic Toolshop (Matlab-like tool for biology) understands biological data types and allows easy analy and viewing (www.vigyaancd.org)

